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So far, black holes have been conclusively detected within only two mass (MBH)

ranges: stellar-mass (where 3 M⊙ ≤ MBH ≤ 100 M⊙) and supermassive (106 M⊙ ≤

MBH ≲ 1010 M⊙). Intermediate-mass black holes (IMBHs, 100 M⊙ ≤ MBH ≤

106 M⊙) represent a missing component that could provide essential insights into

black hole formation, evolution, and dynamics. Dynamical signatures of IMBHs

have mainly been studied in globular clusters, but dynamical friction could bring

such clusters over time to the galactic center. The presence of these higher mass

objects may be identified by their effect on the motion of the central black hole

Sgr A* or stars around it. In this thesis I investigate, given a possible density

profile for a black hole population in the inner parsec of the Milky Way galaxy,

whether the effect of these black holes on the phase space of Sgr A* and the orbital

parameters of the star S2 is detectable with recent innovations in astrometry while

necessarily fitting within current observational constraints. I find that the IMBH

profile provided by Mastrobuono-Battisti et al. (2014), which distributes ∼ 10

104 M⊙ IMBHs within one parsec, induces the largest angular shift of∼ 65 µas yr−1

on the position of Sgr A*, corresponding to a perpendicular velocity component

magnitude of 1.6 km s−1. Additionally this profile is the only one from the profiles

examined to induce changes in the orbit of S2 that surpass those induced by general

relativity, generating a mean angular shift in periapse and apoapse of 62 µas and

970 µas respectively.
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CHAPTER 1

INTRODUCTION

1.1 Brief Review of Black Holes

Black holes have been objects of inquiry ever since their mathematical discovery

in the solutions of Einstein’s field equations of general relativity. Their simplic-

ity, being described solely by gravitational mass, angular momentum, and electric

charge (Israel, 1967) make them particularly significant in fundamental physics

and astrophysics. While black hole theory has been developed mathematically, an

astrophysical understanding of these objects is so far incomplete. Black holes have

been conclusively detected within two mass (MBH) ranges – stellar-mass (where

3 M⊙ ≤ MBH ≤ 100 M⊙) and supermassive (106 M⊙ ≤ MBH ≲ 1010 M⊙) – but

are theoretically capable of existing at any mass.

Stellar-mass black holes are the end result of a gravitationally collapsing mas-

sive star. Through careful observation of close binaries, one can detect stellar-mass

black holes by their X-ray radiation, given that the derived primary mass exceeds

the (extremely conservative) neutron star upper mass limit of 3 M⊙. The first

of such evidence was found between the 1970s and 1980s (e.g. Cygnus X-1, see

Webster & Murdin, 1972), and more recently black holes of order 10 M⊙ have

been detected through gravitational waves produced from their mergers. (e.g.

GW150914, see Abbott et al., 2016).

Supermassive black holes (SMBHs) have been identified in the centers of nearly

all massive galaxies, and are distinguished by their extremely high mass (on the

order of 106 or higher) and low density (see reviews by Kormendy & Ho, 2013;
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McConnell & Ma, 2013; Graham, 2016). At the center of the galaxy, a SMBH

will continue to grow through accretion of matter and black hole mergers. A tight

correlation between SMBH mass and the velocity dispersion of surrounding stars

suggests a “principle of self regulation”, which limits the final black hole mass due

to the gravitational potential-well depth of its host spheroid (see Di Matteo et al.,

2005, and references therein) to ∼ 1010 M⊙ (Natarajan & Treister, 2009). The

majority of SMBHs are viewed as dormant, while active galactic nuclei (AGN),

observed as bright sources at the center of a galaxy, are often associated with

SMBHs accreting gas from the host galaxy’s core. Quasars are the most powerful

and point-like of AGN, being observed out to very high redshifts (z ∼ 7.5, ∼ 0.7

Gyr after the Big Bang) (Loeb & Furlanetto, 2013; Bañados et al., 2018).

The initial formation mechanism of SMBHs still remains a mystery, though an

obvious model involves 10− 100 M⊙ “seeds” that form from the deaths of massive

stars and grow via accretion. However, SMBHs pose a particular physical hurdle

of needing enough matter within a very constrained volume, necessitating that the

matter has little angular momentum. Hence slower accretion processes would limit

the growth rate of an SMBH. Given that SMBHs on order of 105 M⊙ had already

formed by redshift z ≈ 7.5 (which is inferred through observation of quasars, see

Loeb & Furlanetto, 2013; Bañados et al., 2018), supermassive black holes more

likely emerged in the early Universe within the very first massive galaxies and

involved rapid gas accretion observable in AGN. Hydrodynamical simulations of

the period before re-ionization have indicated that low-spin and metal free galaxies

with viral temperatures of ∼ 104 K and suppressed H2 formation will form a single

central black hole (Bromm & Loeb, 2003). Additional formation models involve

dynamical interactions such as black hole binaries or relativistic instabilities (see

Begelman et al., 1984).
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The currently observed mass distribution of black holes possesses an absence of

intermediate-mass black holes (IMBHs), black holes of masses from 102 − 105 M⊙.

They are too massive to be formed from the collapse of present-day stars, and

their supposed environments lack the high density and velocities that could poten-

tially fuel SMBH growth. Circumstantial evidence has identified potential IMBH

candidates, though there has yet to be any certain dynamical mass measurements.

Despite the relatively weak observational evidence, IMBHs continue to represent a

critical missing link between stellar and supermassive black holes, and a definitive

discovery could provide essential insights into black hole formation, evolution, and

dynamics.

Thus far, 4 distinct hypotheses for IMBH formation mechanisms have been

proposed in the literature:

1. The direct collapse of very massive Population III stars. Population III stars

necessarily formed out of unmagnetized and metal-free gas, and from recent

numerical simulations are further suggested to possess a characteristic mass

m ≥ 200 M⊙ (Bromm et al., 1999; Abel et al., 2000; Figer et al., 1996). Such

a star could then collapse to a massive black hole of at least half the initial

stellar mass (Madau & Rees, 2001).

2. Runaway mergers within dense stellar clusters. A number of star clusters

has been discovered within 100 parsecs (pc) of the Galactic Center, opening

new research into the relation between these clusters, the inner 100 pc of the

Galactic Center, and the development of the Milky Way’s central SMBH.

Semi-analytical N -body simulations of a variety of such star clusters demon-

strate that, as star clusters sinks inward towards the Galactic Center, a

collision runaway star can form and grow via repeated stellar collisions. This
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runaway system then collapses to an IMBH of characteristic mass 1000 M⊙

(Zwart et al., 2006).

3. Gas accretion from primordial globular clusters on to stellar-mass black holes.

This hypothesis was initially developed by Leigh et al. (2013) to explain the

variety of stellar populations within a single globular cluster, arguing that

accretion of the interstellar medium onto stellar-mass black holes can be an

adequate mechanism for removing gas produced from initial star formation.

The process would lead to a large increase of the black holes’ mass, hastening

their mass segregation and ultimately the formation of IMBH seeds.

4. Stochastic formation via mergers and mass transfers. Based on results of

the Monte Carlo Cluster Simulator (MOOCA) simulations of dense stellar

systems developed by Giersz et al. (2016), IMBHs are formed solely through

mass transfers in black hole binaries and black hole mergers. While these

processes require no particular special conditions to begin, they are inher-

ently random, with the larger cluster concentrations corresponding to higher

probability of IMBH formation on smaller time scales.

Currently, two types of data suggest the existence of IMBHs: Ultraluminous

X-ray sources and observations of globular clusters. Ultraluminous X-ray Sources

(ULXs) refer to compact, accreting X-ray sources with luminosities exceeding those

of any known stellar process (> 1039 erg s−1). Generally, active black holes are

often candidates of ULXs as they emit X-rays via accretion. Accreting matter

forms a thin disk around a black hole with inner boundary of rin ∼ 3 Rsch. Here,

Rsch = 2GMBH/c
2 is the Schwarzchild radius, making rin directly proportional to

the black hole mass:

rin ∼ 3

(
2
GMBH

c2

)
≈ 9

(
MBH

M⊙

)
km (1.1)

4



Assuming that the X-rays are emitted isotropically, a black hole’s luminosity

is constrained by the balance of outward radiative forces and inward gravitational

forces. The upper limit extrapolated from this constraint is known as the Edding-

ton Luminosity:

LEdd =
4πGMBHmpc

σT

= 1.26× 1038
(
MBH

M⊙

)
erg s−1 (1.2)

where σT = 6.65×10−25 cm2 is the Thomson scattering cross section for an electron

and we suppose the accreted stellar material is pure ionized hydrogen. Note that

anisotropic accretion or radiation can produce luminosities that arbitrarily exceed

the Eddington luminosity.

Efforts to understand the true nature of observed ULXs have depended on

estimating their compact object masses. Such progress has been made through

analyzing quasi-periodic oscillations (QPOs) of ULXs, which are characterized

as frequency peaks in the power spectrum of ULX light curves. Pairs of high-

frequency QPOs (100-450 HZ) occurring in a 3:2 ratio have been associated with

stellar-mass black holes, and appear to scale inversely with the black hole mass

(Remillard & McClintock, 2006; Belloni et al., 2012). One can posit the existence of

analogous 3:2 high-frequency QPOs from IMBHs under the black hole unification

paradigm, which attempts to understand how AGN evolve over cosmological time-

scales by studying similar properties within the more rapid evolution of black hole

X-ray binary systems (Vaughan & Uttley, 2005). Mass estimates for the IMBH

candidates M82 X-1 and NGC 1313 X-1 have been extrapolated from such QPO

measurements (Pasham et al., 2014, 2015). However, it is important to recognize

that such these are only rough estimations; there has been no direct measurement

of compact source masses.

Kinematic data from observed galactic centers has additionally offered esti-
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mates of black hole masses in distant galaxies, and particularly for IMBHs in

low-mass galaxies, AGN, and globular clusters. There is an tight empirical corre-

lation, known as the M − σ relation, between central black hole mass and velocity

dispersion of its host spheroid of stars (Ferrarese & Merritt, 2000; Gebhardt et al.,

2000). Using a complete sample of black hole masses in nearby galaxies, McConnell

et al. (2011) gives the relation as:

MBH

108 M⊙
≈ 1.9

(
σ

200km s−1

)5.1

(1.3)

In accordance with this relation, massive black holes in the center of globulars

would theoretically affect the distribution function of stars, producing cusps in

velocity and density. Therefore, observation of these cusps in globular clusters

could indirectly confirm the existence of IMBHs. Graham et al. (2001) presented a

strong correlation between bulge concentration and mass of a central supermassive

black hole, finding that the central radial concentration of light correlates strongly

with black hole mass. This correlation was re-investigated and re-described by

Graham & Driver (2007) as a log-quadratic relation between black hole mass and

Sérsic index n (a measure of concentration), with a break in slope of the relation

between low- and high- mass ends. While there is inarguably aMbh−n relation due

to the existence of a mass-luminosity relation (e.g. Young & Currie, 1994; Jerjen

et al., 2000) and luminosity-n relation, several studies have failed to recover the

relation obtained by Graham et al. (2001) when reviewing galaxies with directly

measured black hole masses. This is due to significantly varying measurements of

the Sérsic index for a particular galaxy between authors (e.g. Laurikainen et al.,

2010; Sani et al., 2011; Vika et al., 2012) (see Savorgnan et al., 2013, for a census of

Sérsic index measurements for local galaxies with directly measured SMBH mass).
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Gebhardt et al. (2002) used Hubble observations to report stellar distributions

in the globular cluster M31-G1 that favor a ∼ 2 × 104 M⊙ black hole, significant

at the 1.5σ level. However, their significance is dependent on extensive N -body

modeling of such clusters that has not been thoroughly pursued (Coleman Miller

& Colbert, 2004). A more recent and promising method for detecting IMBHs in

globular clusters uses the monitoring of pulsars to identify or constrain an IMBH’s

dynamical signature. Kızıltan et al. (2017) combine measurements of pulsars de-

tected in the globular cluster 47 Tucanae (NGC 104) with different dynamical

N -body simulations to quantify what distribution is most likely associated with

the observed range of pulsar accelerations, and their best fit model suggests cen-

tral black hole with a mass of 2, 300+1,500
−850 M⊙ while independently and consistently

measuring a total cluster mass of 0.76 × 106 M⊙. Similarly, Perera et al. (2017)

utilized timing observations of a millisecond pulsar in the globular cluster NGC

6624 and the cluster’s mass properties to argue the existence of a IMBH with mass

> 7, 500 M⊙.

1.2 Cluster Systems

Clusters, being discontinuous dynamical systems, experience complex effects in-

duced by the discrete nature of their components and the interactions occurring

between them. Gravitationally bound clusters are characterized by a relaxation

time τr, during which a test object changes its velocity by an order itself due to

random perturbations induced by surrounding gravitational fields. Chandrasekhar

(1941) first estimated this timescale as

τr ∼
σ3

8πG2µ2n lnΛ (1.4)
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where µ is stellar mass, σ is the velocity dispersion, n is the number of stars per

unit volume, and Λ is the ratio of the maximal and minimal impact parameters,

bmax and bmin. For a virialized and self-gravitating system, the typical bmin (which

leads to a deflection angle of π/2) is G⟨m∗⟩/σ2, and bmax is on the order of the

half-mass radius Rh (Freitag et al., 2006). Regions where the gravitational field

is dominated by a central object with mass M• and characterized by an average

stellar mass ⟨m∗⟩ possess a Λ of approximately M•/⟨m∗⟩.

In idealizing relaxation as the sum of a large number of independent two-body

encounters, one can define an additional expression for relaxation time in terms

of velocity dispersion σ, number density n, and average stellar mass ⟨m∗⟩ (Freitag

et al., 2006):

τr =

√
2π

64

σ3

G2⟨m∗⟩2n lnΛ (1.5)

= 3.67× 108 yr
(

σ

100 km s−1

)3(
n

106 pc−3

)−1(⟨m∗⟩
M⊙

)−1( lnΛ
10

)−1

(1.6)

This equation is constructed such that a particle of mass ⟨m∗⟩, traveling for a time

dt at a velocity v =
√
2σ through a field of particles of the same mass, would be

deflected by an angle dθ, with ⟨dθ⟩ = (π/2)2dt/τrlx. In the scenario when lnΛ

is essentially constant, more massive objects will experience a steady deceleration

due to dynamical friction. Assuming a spherical density distribution, the total

acceleration of a larger mass object M is G/v2M times the total mass of lower-mass

objects m with velocities vm < vM . The acceleration of M can be solved for, given

that the smaller mass objects are isotropically distributed in phase space:

dv⃗M
dt

= −16π2 lnΛG2m(M +m)

∫ vM
0

f(r, v)v2dv

v3M
v⃗m (1.7)

Equation 1.7 is known as the Chandrasekhar dynamical friction formula, derived

for a mass that travels through an infinite and homogeneous background (Chan-

drasekhar, 1943). Due to this frictional force, larger mass objects in an otherwise

8



homogeneous stellar cluster will over time migrate to the center of the system.

Analogously, a cluster is equally subject to dynamical friction as it orbits the host

galaxy center with a velocity vc, and eventually spirals inwards from an initial

radius ri and mass M after a time (Binney & Tremaine, 2011, eq. 7-25)

tfric =
1.17

lnΛ
r2i vc
GM

(1.8)

= 2.64× 1010 yr
(
lnΛ
10

)−1(
ri

2 kpc

)2(
vc

250 km s−1

)(
M

106 M⊙

)−1

Bahcall & Wolf (1976) first approximated the effects of relaxation on the final

density profile for a simplified case of a spherical cluster with a central massive

black hole (MBH). They applied a Fokker-Planck treatment to describe the evo-

lution of a particle’s velocity probability density function when experiencing drag

and random forces, ultimately finding a r−7/4 power law for the equilibrium stellar

density. The treatment discounted stars on elongated orbits, and assumed stars

are destroyed only through reaching a high binding energy (e.g. significant star-

star collisions or tidal disruptions). Additionally, their idealization corresponded

to an isotropic phase space distribution

f(r⃗, v⃗, t)dr⃗dv⃗ = mass in dr⃗dv⃗ (1.9)

from which one calculates the number of particles per unit volume in coordinate

space, per unit volume in velocity space. In an N -body system, such a phase space

distribution implies there is a zero net diffusive flux of particles in energy space,

implying that the phase space distribution can be written as only a function of en-

ergy per unit mass. In general, given a spherically symmetric density distribution,

we can recover a phase space distribution function that depends only on energy

and generates a given density profile ρ with potential Φ (Binney & Tremaine, 2011,

Eq. 4-140b):

f(E) = 1√
8π2

d

dE

∫ E

0

d2ρ

dΦ2

dΦ√
E − Φ

(1.10)
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Conversely, we can find the density profile of a system given the phase space

distribution of that system and potential Φ (Binney & Tremaine, 2011, eq. 4-138):

ρ(r) = 4π

∫ Φ

0

f(E)
√
2(Φ− E)dE (1.11)

Similar to Bahcall & Wolf, Shapiro & Lightman (1976) analytically derive a

ρ ∝ r−7/4 cusp that surrounds a central black hole. Letting tS(r) and tU(r) denote

the net star and net energy diffusion timescales at a radius r respectively, we have

from dynamic equilibrium that for a general N -body system, tU(r) ∝ tS(r)E(r),

where E(r) is the mean energy per unit mass at r. In this particular scenario

E(r) ∼ −GM/r, giving

tU(r) ∝ tS(r)r
−1 (1.12)

Supposing a steady state system, stars are disrupted and consumed upon reaching

the tidal radius of the black hole,

rt ≃ R⋆(MBH/M⋆)
1/3 (1.13)

where M⋆ and R⋆ are the stellar mass and radius respectively. This consumption is

countered by a net inward flux of stars migrating from beyond the central region,

which replaces disrupted stars and maintains the stellar distribution. The net

energy flux U can be solved for given a stellar density ρ(r):

U ∼ ρ(r)r3E(r)

tU(r)
=

−ρ(r)r2GM

tU(r)
= constant (1.14)

Due to the lack of outgoing stars at rt, the net diffusion time from 2rt to rt must

equal the timescale for their energy to decrease by a factor of 2. This implies

tU(rt) ∼ tS(rt), which when taking Equation 1.12 gives us

tU(r) ∼
(rt
r

)
tS(r)r (1.15)
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tU can be equated to the relaxation timescale τr ∝ σ3/2/(G2m2ρ) (Equation 1.4)

for r > rt. As σ2 ∼ GM/r for bound stars near a black hole, we can combine the

above equation with Equation 1.14 to yield ρ(r) ∝ r−7/4. The findings of Bahcall

and Wolf have been further supported by more detailed Fokker-Planck treatments

that accounted for various bounding conditions such as loss-cone effects (Bahcall

& Wolf, 1977; Lightman & Shapiro, 1977; Cohn & Kulsrud, 1978). Monte-Carlo

codes have also demonstrated a r−7/4 cusp forming from diffusive, local relaxation,

taking into consideration disruptive and non-disruptive collisions (Shapiro, 1985;

Freitag & Benz, 2002).

In this work we are concerned with such systems, present in the the centers

of galaxies and in particular AGNs. These systems are characterized by central-

ized powerful energy sources, which possess luminosities on the order of 1046 erg

s−1 (over a trillion times the luminosity of the sun) while covering regions span-

ning less than a light year (∼ 1018 cm). Their compactness and energy radiation

cannot reasonably be explained by any stellar-related processes, and suggest the

presence of a relativistic potential only associated with black holes. The black

hole model for galactic nuclei was first theorized by Lynden-Bell & Rees (1971),

though beginning with Sandage (1965) astronomers have attempted to prove the

existence of massive central black holes through photometric and spectrographic

measurements. Decades would pass before observations were reliable enough to

rule out alternative theories, and the most conclusive evidence of SMBHs first

came from the following observational works: Tanaka et al. (1995), who detected

a highly asymmetric and predominately red-shifted X-ray emission line that could

have only been broadened relativistically; and Miyoshi et al. (1995), who used very

long baseline interferometry (VLBI) to detect an extremely dense central object

in the galaxy NGC 4258 (that required a mass of 3.6 × 107 M⊙ within only 0.13
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parsec!)

Forces in the center of our own galaxy are dominated by the potential of a

∼ 4 × 106 M⊙ compact radio source (Gillessen et al., 2009; Ghez et al., 2008)

Sagittarius A* (Sgr A*), first discovered by Balick & Brown (1974). Through

high-resolution infra-red monitoring of the orbits of stars in the innermost arc-

second (referred to as S-stars), Schödel et al. (2002); Eisenhauer et al. (2005); Ghez

et al. (2005); and Gillessen et al. (2009) were able to confirm previous hypotheses

developed from proper motion and radial velocity surveys (see Lacy et al., 1979,

1980; Eckart & Genzel, 1996, 1997; Genzel et al., 1996, 1997; Ghez et al., 1998)

that Sgr A* is in fact a supermassive black hole. Its radius of influence, confirmed

in observations by Merritt & Ferrarese (2001), has been analytically solved for by

Peebles (1972, Eq. 19):

rinfl =
GMbh

σ2
(1.16)

= 1.19 pc
(

Mbh

4× 106 M⊙

)(
σ

120 km s−1

)−2

where σ is the characteristic velocity dispersion of the cluster system.

1.3 Stellar- and Intermediate-mass Black Holes in Clusters

To extend knowledge of stellar and cluster dynamics, astronomers have naturally

sought an understanding of clusters containing stellar-mass black holes and poten-

tial intermediate-mass black holes. Stars of mass ≳ 30 M⊙ can collapse to become

stellar-mass black holes with a median mass of 7 M⊙ (Bailyn et al., 1998). As

a consequence of dynamical friction, these comparatively higher mass objects will

sink to the Galactic Center on time scales within a Hubble time (Morris, 1993).
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The resulting mass segregation then produces a collection of black holes concen-

trated within the inner parsec. Miralda-Escudé & Gould (2000) calculated that,

assuming a characteristic mass of 7 M⊙ for stellar black holes and velocity dis-

persion data fit by Genzel et al. (2000), a cluster of approximately 20,000 black

holes will form around Sgr A*. This relaxes to a density profile reflecting the

Bahcall-Wolf cusp,

ρbh =

(
0.23 M⊙

⟨mbh⟩

)1/2

ρ∗(r) (1.17)

where ρ∗(r) ≡
5

16π

3× 106

(1.8)3

( r

1.8

)−7/4

M⊙ pc−3

provided that their assumption of the fraction of massive stars forming black holes

is correct, and that energy is primarily lost from the cluster by black hole capture

near the center. Only now has this theory been accompanied with observation of

a collection of X-ray binaries observed within one parsec of the Galactic Center,

possessing distinctive low-energy spectra that suggest these binaries are quiescent

black hole low-mass X-ray binaries. Furthermore, their spatial distribution and

luminosity function provide evidence for the existence of ≳ 10, 000 additional iso-

lated black holes (Hailey et al., 2018).

The aforementioned M − σ relation predicts black holes of mass 102 M⊙ <

MIMBH < 105 M⊙ in smaller and fainter globular clusters, while various collapse

scenarios also posit their existence in dense clusters. Gürkan et al. (2004) ex-

amined the possible dynamical evolution of young dense star clusters, and their

N -body Monte Carlo simulations displayed rapid mass segregation and acceler-

ated relaxation. Given that a Salpeter initial mass function is prone to the Spitzer

instability (Spitzer Jr, 1969), i.e. the inability of heavier stars to establish energy

equipartition with lighter stars, core collapse may occur within a fraction of both

the relaxation time at the half mass radius and the timescale of massive star seg-
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regation (see Eq. 1.8). If this timescale is less than the lifetime of massive stars,

stars in the collapsing core can undergo a runaway collision process which produces

a massive black hole of ∼ 0.1% of the total cluster mass. Their work supports the

findings of preceding smaller scale N -body simulations of stellar clusters (Zwart

et al., 1998; Zwart & McMillan, 2002).

N -body codes simulating the dynamics of IMBHs in in-spiraling nuclear star

clusters (NSCs) have depicted similar processes of mass segregation and accelerated

relaxation. Focusing on the NSC in-fall formation scenario, in which dense massive

clusters decay due to dynamical friction towards the center of the host galaxy and

merge to form the central NSC (Tremaine et al., 1975), Mastrobuono-Battisti

et al. (2014) modified N -body simulations as described in Antonini et al. (2012) to

populate infalling clusters with IMBHs. Due to the IMBHs, the cluster relaxation

time decreased by a factor of ∝ NIM
2
I /(N∗M

2
∗ ), with NI and MI being the number

and mass of the IMBHs andN∗ andM∗ the number and mass of stars. The system’s

evolution is dominated by the two-body relaxation induced by the IMBHs, with the

IMBHs’ final density profile well-fitted to a power law ρIMBH ∝ r−2.32. Note that is

within the range expected for strong mass segregation (2 ≲ α ≲ 2.75; see Alexander

& Hopman, 2009), and although the density profile may be sensitive to significant

statistical noise, the three simulations ran by Mastrobuono-Battisti et al. show

consistent results indicating a clear cusp profile for the IMBHs when compared with

the stellar core profile. The stellar component of the clusters formed a cusp early

in the NSCs’ evolution, with a slope slightly shallower than a Bahcall & Wolf slope

(ρ∗ ∝ r−1.26) and cusp radius of ∼ 1 pc. Unlike the IMBHs, which interact and

scatter but are never ejected from the system, the accelerated relaxation process

increases the rate of stellar scattering and ejection.
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Due to its proximity, the Galactic Center is a uniquely opportune environment

to both study the dynamics of a stellar cluster dominated by a supermassive black

hole, and search for stellar- and intermediate-mass black holes. With analysis of

the stellar cluster population within 1 pc of Sgr A* showing a perplexing number

of massive main-sequence stars (the so-called “paradox of youth”; see Ghez et al.,

2003), various theories have been constructed that explain this observation by

externalizing star formation. These theories hypothesize in-falling star cluster

scenarios in which runaway formation of an IMBH can occur (see Gerhard, 2000;

Kim & Morris, 2003; Zwart et al., 2003; McMillan & Zwart, 2003; Hansen &

Milosavljević, 2003; Kim et al., 2004). Despite the plausibility of such hypotheses,

there remains many predictions implied by resulting mass-segregation and ejection

of low-mass stars which have not necessarily been observed in the Milky Way:

• a residual core, of which IRS 13E is a candidate (Schödel et al., 2005);

• a total cluster mass of ≳ 105 M⊙, which is an order of magnitude higher than

observations;

• strong mass segregation and a loss of low mass stars at large radii. While

there is no observed signature of mass segregation, there have been no detec-

tion of post-main sequence OB stars - stars experiencing high mass loss as

they transition between Wolf-Rayet (WR) stars (Allen et al., 1990; Najarro

et al., 1994, 1997) and extreme O supergiants (Morris et al., 1996) - beyond

0.5 pc.

The presence of higher mass objects may also be quantified by their effect on the

motion of Sgr A*. Due to gravitational encounters with nearby objects, a massive

black hole in a galaxy’s center experiences a random walk in momentum space.

The expected amplitude of this motion can be solved for with the mass of the black
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hole Mbh, the typical stellar mass ⟨m∗⟩, and the one-dimensional stellar velocity

dispersion σ (Merritt et al., 2007; Chatterjee et al., 2002; Loeb & Furlanetto, 2013):

⟨V 2
bh⟩ ≈ 3

⟨m∗⟩
Mbh

σ2 (1.18)

≈ 0.1 km s−1

(
⟨m∗⟩
M⊙

)(
Mbh

3× 106 M⊙

)−1(
σ

100 km s−1

)2

N -body simulations performed by Merritt et al. that ranged a variety of galaxy

models and stellar masses demonstrated a proportion between Brownian velocity

and black hole mass as ⟨V 2
bh⟩ ∝ M

−1/(3−γ)
BH , where 0.5 ≲ γ ≲ 2.0 represents the

power-law index of the surrounding stellar density profile (ρ ∝ r−1). Using velocity

dispersion data from Battaglia et al. (2005) and current mass estimates for Sgr A*

(Gillessen et al., 2009; Ghez et al., 2008), we can derive an expected Brownian

motion of ⟨V 2
Sgr⟩ ≈ 0.2 km s−1. This prediction lies within constraints on the

residual proper motion of Sgr A* perpendicular to the galaxy plane has been

measured by Reid & Brunthaler (2004), though these measurements contain almost

1 km s−1 of uncertainty. Possible scenarios of a binary black hole with mass ∼

103 − 105 M⊙ in the Galactic Center, discussed by Hansen & Milosavljević (2003)

and Yu & Tremaine (2003) to explain the existence of young stars and ejection of

hypervelocity stars, are inherently restrained by limits on the velocity of Sgr A*.

Current observations as well as the limits in IMBH mass outlined by Hansen &

Milosavljević exclude IMBHs with masses greater than ∼ 104 M⊙ and semimajor

axes ∼ 103−105 AU (∼ 0.5 mpc−0.5 pc), assuming accuracies of 0.1−1 mas. We

also have semi-major axis lower constraints due to gravitational wave timescales

(Peters, 1964),

a ≥ 4

(
1

5

G3(MSgr +MIMBH)MSgrMIMBH

c5
Tc

)1/4

(1.19)

∼ 0.7 mpc
(

MSgr

4× 106 M⊙

)1/4(
MIMBH

103 M⊙

)1/4(
Tc

1010 yr

)1/4

,

16



No. 2, 2003 NEED FOR SECOND BLACK HOLE AT GALACTIC CENTER L79

Fig. 1.—Interaction of stars with a putative second black hole. The filled
circles indicate the energy and angular momentum of He emission-line stars
associated with the IRS 16 group, assuming they are orbiting in the potential
of a central black hole of mass (the stellar potential is included63# 10 M,

but negligible). The error bars indicate the effect of varying the unknown line-
of-sight position Z between and . The open circles showZ p 0.5R Z p 1.5R⊥ ⊥
the central cluster stars for which no such uncertainty remains since complete
orbits (Ghez et al. 2003b) can now be determined (thus these error bars are
true measurement errors). The open triangles indicate approximate values for
central cluster stars with incomplete orbits. Given E and L for any star, we
can determine whether it has a peribothron (apbothron) lying inside (outside)
a given postulated IBH orbit. The solid line indicates the locus of stellar orbits
that cross an eccentric IBH orbit with a semimajor axis of 1! and an eccentricity

. Thus, an IBH on this orbit can interact with all the stars shown.e p 0.82
The dashed lines indicate the same for circular orbits at 2! and 0!.2. A black
hole on either of these orbits can interact with one of the two clusters but not
both simultaneously. To orient the reader, the dotted lines indicate the locus
of orbits with and . The constants and correspond to ae p 0 e p 0.9 E L0 0
circular orbit at pc.′′1 p 0.04

Fig. 2.—Assuming a circular orbit around an SBH of , we can63# 10 M,

rule out an IBH with mass and semimajor axis a by the measurement ofMIBH
an astrometric wobble of the radio image of Sgr A*. The shaded regions show
the detection thresholds for astrometric resolutions of 0.01, 0.1, and 1 mas,
respectively, assuming a monitoring period of 10 yr. The dashed lines indicate
coalescence due to gravitational radiation in 106 and 107 yr, respectively. The
arrow indicates the orbital extent of the innermost detected young stars.

but have since then received a significant perturbation near
peribothron that resulted in a new apbothron within the orbit
of the IBH. The star is then trapped until continued IBH in-
spiral brings the orbits into contact again. The claimed radial
anisotropy of these stars (Schödel et al. 2003) is consistent with
such a scenario. The perturbation could have come from a
grazing stellar collision or from the dynamical disruption of a
binary system (Gould & Quillen 2003). For the perturbation
to be strong enough to trap the star in a closer in orbit, the
collision must be grazing because the velocities in this region
are comparable to the escape velocities from the stars them-
selves; i.e., the dynamical evolution is dominated by physical
collisions rather than by two-body relaxation.
The spectral differences between the central cluster stars and

the IRS 16 stars lend support to this picture. Although both
are young and massive, the former appear to be main-sequence
stars of roughly O or B type, while the latter are extended,
evolved stars in the supergiant or Wolf-Rayet stage. The more
compact nature of the central cluster stars may reflect the strip-
ping of the outer envelopes in grazing collisions. This is dif-
ferent from the alternative proposal (e.g., Genzel et al. 2003)
in which the observed stars are assembled from lower mass
objects in stellar mergers. The normal rotation rate of S0-2

(Ghez et al. 2003b) suggests that the role of stellar mergers in
the assembly of S0-2 was limited.
If an IBH is present at the Galactic center, there is also the

possibility of directly observing high-velocity stars that have
been ejected from the region. This would especially be true if
the SBH-IBH binary has hardened past the stalling radius and
is continuing to evolve slowly via the gravitational slingshot
of stars that diffuse into the loss cone. The velocities of the
ejected stars reflect the specific binding energy of the IBH at
the time of ejection.
Direct constraint on the IBH hypothesis may be provided by

the noninertial motion of Sgr A*. An IBH at the Galactic center
will be revealed in the apparent proper motion of the radio
image of Sgr A* relative to the mean ∼6 mas yr solar drift!1

(Backer & Sramek 1999; Reid et al. 1999). Assuming a circular
orbit of the IBH, the amplitude of the gravitational reflex of
the SBH relative to the barycenter of the binary, W ∼ref

, where W is the angular separation between theM /M WIBH SBH
black holes, must be larger than the cumulative positional res-
olution mas of the radio telescope to achieve detection.DW ! 1
In turn, the total projected distance traversed by the SBH, equal
to for a monitoring program of!1 1/2W ∼ T M R (G/RM )ref m IBH gc SBH
duration and distance to the Galactic center kpc,T R ∼ 8m gc
must also be larger than . These constraints are summarizedDW
in Figure 2. An IBH in the mass range "105 M, would also
be revealed by the effect of gravitational wave emission on
pulsar timing residuals (Lommen & Backer 2001) if the latter
could be measured at the ∼10 ns accuracy over an arbitrary
period.

5. CONCLUSIONS

We have proposed a model that addresses the peculiar nature
of the young stars in the Galactic center. An infalling IBH can

(a) Detection limits provided by
Hansen & Milosavljević (2003)

(b) Detection limits provided by Löckmann &
Baumgardt (2008), assuming a monitoring pe-
riod of 10 yr.

Figure 1.1: Preliminary astrometric constraints on SMBH-IMBH binaries in the
Galactic Center, assuming circular orbit, and SMBH mass of 3 × 106 M⊙, and
distance to Galactic Center as 8.5 kpc. Dotted lines represent coalescence due to
gravitational wave radiation over various timescales.

such that the time of coalescence due to gravitational radiation (Tc) does not occur

within Hubble time (∼ 10 Gyr).

The short-term effects of IMBHs have also studied on the S2, which orbits

Sgr A* at a semi-major axis of ∼ 5 milliparsecs (mpc) (Gillessen et al., 2009).

Though general relativity produces perturbations on a time-scale of about 10 yr

(Gillessen et al., 2009), a key signature of an IMBH in the vicinity of S2 would be

a change in eccentricity and orbital plane of the star. An IMBH of mass greater

than ∼ 1000 M⊙ at a distance of ∼ 1− 5 mpc may produce up to 1◦ shifts in the

orbital plane per period (Gualandris et al., 2010).

The question remains, however, as to what extent the astrometric wobble of

Sgr A* and orbital evolution of S2 can be accurately measured and used to infer a

population of IMBHs in the Galactic Center. It is a complicated N -body problem

that not only involves a central black hole and multiple IMBHs, but the stellar
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population within the inner parsec of which the density profile is not well known.

The predicted dynamical signature of an IMBH can be imitated by a population of

mass-segregated objects (e.g. neutron stars, stellar-mass black holes). Alongside

these potentially complicating factors is the small sphere of influence of an IMBH

(using Eq.1.16 and fiducial measurements for globular clusters, GMBH/σ
2 ≈ 0.03”),

which makes data extremely sensitive to details of data-model comparison and

lessens the statistical significance of IMBH detection (Van der Marel & Anderson,

2010; Baumgardt et al., 2002). Both numerically and observationally, determining

a sufficient answer requires considerable accuracy.

1.4 Advancements in Astrometry

Fortunately, current advances in astrometry allow us to observe phenomena on a

scale never before achieved. Through Very Long Baseline Interferometry (VLBI),

astronomers may simultaneously observe a radio source with an array of radio

telescopes, each of which intercepts the received signal to amplify, mix-down, and

sample. The data is then correlated after accounting for the geometric delay, and

produces an image with resolution inversely proportional to observing frequency ν

and baseline B,

θres =
c

νB

Since an array of N antennas acts as a collection of N(N − 1)/2 paired interfer-

ometers, the maximum separation between a pair serves as a resolving baseline for

the system. This has allowed for dramatic increases in the angular resolution of

observations during the later 20th century, improving the first radio observations

(Jansky, 1933, with order 10 degree error) by more than a factor of ten million

(∼ 0.001 arcsec currently). Millimeter wavelength VLBI (mm-VLBI) can be an
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especially powerful though challenging technique to observe phenomena at angular

resolutions unreachable elsewhere. While intrinsic problems such as atmospheric

stability and induced fluctuations in signal phase grow more acute, these effects

can be lessened if the overall sensitivity of the VLBI system is appropriately in-

creased (e.g. through increasing bandwidth of observations or the rate at which

data is sampled). mm-VLBI thus provides a great opportunity to discern more

compact structures with impressive spatial resolution (For an in-depth review of

VLBI, see Thompson et al., 2001; Kellermann & Moran, 2001; Middelberg & Bach,

2008).

In particular, we turn our attention to the Event Horizon Telescope (EHT)

and GRAVITY. The EHT is an international collection of millimeter and sub-

millimeter radio observatories, built to achieve an angular resolution comparable

to the event horizon of Sgr A*. The EHT effectively creates an Earth-sized in-

terferometer using telescopes stationed throughout the globe, and is capable of

measuring relative positions and strengths within Sgr A* (e.g. accretion disk,

jets) (Doeleman et al., 2008; Fish et al., 2011). Though the images produced do

not alone translate to absolute positions due to lack of external phase reference,

many of the VLBI stations incorporated in the EHT contain independent anten-

nas that allow for simultaneous target sourcing and phase referencing. Hence,

upon identifying a necessary phase-referencing candidate (e.g. a quasar), one can

judiciously use antennas from various EHT stations to achieve micro-arcsecond

(µas) scale astrometric positioning (see Broderick et al., 2011, for potential an-

tenna configurations and reference sources). Similar to the EHT, GRAVITY can

measure relative positions between a fringe tracking star and a source of interest

as faint at mK ≈ 17 mag (Gillessen et al., 2010). In astrometric mode, GRAVITY

reaches precisions of 10 µas by determining and tracking the centroid of an ob-
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ject’s emission (Eisenhauer et al., 2008). GRAVITY is additionally comprised of

an optical/infrared telescope with ∼ 100 m diameter angular resolution and 200

m2 collecting area, resolving between 2 − 140 milliarcsecond features in imaging

mode. The star S2 has already been observed by GRAVITY at 10s exposures for a

total integration time of 300s, and these observations produced strong constraints

on the magnitude of potential companions (see Abuter et al., 2017).

With this, both the EHT and GRAVITY will enable us to study the Galactic

Center with unprecedented accuracy, endowing astronomers the ability to track

the evolving position and velocity of S-stars and Sgr A*. Specifically, VLBI using

various EHT stations with a necessary phase reference is best for accurately quan-

tifying the evolving position and velocity of Sgr A*, while GRAVITY may be used

to track the orbital dynamics of S2. Through this, we might in the future infer the

existence of dark objects, their distribution, and the overall state of mass segrega-

tion. However, to obtain a preemptive idea on how this existence ultimately affects

observations of Sgr A* and the S-star cluster, we rely on numerical simulations of

this region.

1.5 Thesis Objective

The objective of this thesis is to determine whether, given a possible density pro-

file for a black hole population in the inner parsec, their effect on the position

of Sgr A* and the orbital parameters of S-stars is both detectable provided re-

cent innovations in astrometry and differentiable from that of surrounding stars.

Using modifiable density profiles informed by literature review for stellar- and

intermediate-mass black holes, I developed a code that used the open-source N -
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body integrator REBOUND (Rein & Liu, 2012) to create a simulated orbital system

involving Sgr A*, a number of black holes, and the star S2. Through simulating

scenarios in which the central parsec is populated and not populated with black

holes, I identify the dynamical signature of these distinct and relatively larger-mass

objects. This ultimately serves to establish additional hypothetical observational

constraints and inform future EHT and GRAVITY data collections on the angular

displacement of Sgr A* and evolving S-star orbits.
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CHAPTER 2

PREVIOUS LIMITS

2.1 Constraints on Massive Binary Companions of Sgr A*

For over a decade, researchers have investigated the plausibility of detecting a

single intermediate-mass black hole orbiting Sgr A* given current observational

technologies and data on the proper motion of the central SMBH. To orient our-

selves, let us consider the simple case of an SMBH - IMBH binary, with a primary

and secondary mass m1 and m2 such that m1 ≫ m2, separated by a distance

r. For further simplicity, suppose the orbital plane is fully in our line of sight.

We can calculate the distance of the center of the SMBH to the center of mass

around which the SMBH “wobbles,” as a ≡ (rm2/M) where M = m1 + m2, or

approximately

a ≈ rm2

m1

= 2.5× 10−3 mpc
(

r

1 mpc

)(
m2

104M⊙

)(
m1

4× 106M⊙

)−1

(2.1)

From this, we can calculate the induced angular displacement of the SMBH as the

angle ∆θ, which the length a subtends on the sky from a distance R0 ≡ 8.0 kpc:

∆θ ∼ a

R0

rad (2.2)

≈ rm2

m1R0

648000

π
as (2.3)

= 25.8 µas
(

r

1 mpc

)(
m2

104M⊙

)(
m1

4× 106M⊙

)−1

Note that while to date the Event Horizon Telescope (EHT) has achieved accu-

racies of ∼ 60 µas with its baselines between Hawaii, California, and Arizona, it

is projected that with the Atacama Large Millimeter Array (ALMA) the angular

resolution of the array will double and future EHT observations could potentially

resolve structures as fine as 15 µas.
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LOCALIZING SGR A* AND M87 ON MICROARCSECOND SCALES 5

only at much larger timescales than the observationally moti-
vated subset we consider (i.e., sub-century).
The stellar mass density surrounding Sgr A* has been in-

ferred from infrared studies, finding that the total stellar mass
density is well approximated by a broken power law:

ρ⋆(r)≃ 1.7± 0.8× 106
(

r
0.22pc

)−γ

M⊙ pc−3 , (3)

where γ = 1.2 for r < 0.22pc and γ = 1.75 for r > 0.22pc
(Schödel et al. 2007). This is well constrained observationally
for r> 10−2 pc, though there is considerable uncertainty regard-
ing the structure of the core on smaller scales (Merritt 2010).
In addition there is evidence for a preponderance of young stars
in the vicinity of the supermassive black hole (Buchholz et al.
2009; Do et al. 2009, 2010). This biases the stellar mass func-
tion in the Galactic center towards higher masses. Neverthe-
less, here we make the conservative choice of adopting a stellar
mass function indicative of the Galactic disk. Specifically, we
employ the log-normal mass function for low-mass stars de-
termined by Covey et al. (2008), smoothly joining a Salpeter
high-mass tail, i.e., φ(m,r) ∝ m−2.3 above m ≃ 0.6M⊙, and
truncated at 102M⊙. For our purposes here, it is enough to note
that the average stellar mass and it’s square are m⋆ = 0.75M⊙

and µ2⋆ ≃ 13.7M⊙
2, respectively. Note that the Salpeter mass

function immediately implies that µ2⋆(r) is determined by the
maximum mass and is generally much larger than m2⋆.
Less well constrained is the contribution from stellar rem-

nants. Large numbers of stellar-mass black holes are expected
to collect via dynamical friction in the vicinity of the central su-
permassive black hole (O’Leary et al. 2009; Alexander & Hop-
man 2009). A number of authors have estimated the number
of stellar-mass black holes in the Galactic center, finding that
roughly 2×104 are expected to exist within the inner pc (Mor-
ris 1993; Miralda-Escudé & Gould 2000; Hopman & Alexan-
der 2006; Freitag et al. 2006; Alexander& Hopman 2009). The
distribution of these remnants is less well understood; predic-
tions ranging from flat cores to power-law cusps with indexes
as extreme as −2.75 can be found in the literature (see, e.g.,
Alexander & Hopman 2009; Merritt 2010), though cusps with
an indexes near −2 are most common. Thus we adopt a fiducial
model for the black hole component given by

ρ• =
m•Npc
4π

(

r
pc

)−2

M⊙ pc−3 , (4)

with m• = 10M⊙ and Npc is the number of black holes in the
inner pc.
In Appendix C we derive an approximate power spectrum

for the displacement of the central supermassive black hole,
Px,ω, for an arbitrary number density of objects, n(r), and a
potentially radially dependent mass function, φ(m,r):

Px,ω ≃ ω−4
∫ ∞

0
dr
2(2π)3/2

3
G2µ2

r2
n
Ωk
e−ω

2/2Ω2
k , (5)

with Ωk given by Equation (C10). In this µ is the RMS mass
at a given radius (thus weighted towards the more massive ob-
jects). At this point, there are some general features of note.
First, since Px,ω depends upon the object mass function through
µ2n ∼ µ2ρ/m alone, when the same mass density is present,
perhaps unsurprisingly, more massive stars/remnants result in
proportionally larger displacements. Second, if µ2 is fixed,
n(r)∝ r−ν with ν > 1/2, and the motions of the stars/remnants

Figure 1. Characteristic displacements as a function of time-scale for when
stellar mass black holes and stars are considered (solid), only the stellar com-
ponent is considered (dot-dashed), when the stellar component is assumed to
form a core of size 0.01pc (long-dashed), and when all components are trun-
cated inside of 0.01pc (short-dashed). The region excluded by 7mm observa-
tions with the VLBA is shown by the hatched area (Reid & Brunthaler 2005).
Along the left and right axes the displacements are shown in units of black hole
mass and angle. Along the top axis the radius with Keplerian period equal to
the time period is listed, providing some sense for the location of the objects
that are dominating the fluctuations.

is dominated by the central supermassive black hole, we have

Px,ω ≃
2(2π)3/2

2ν −1
G2µ2

rmin
nmax
Ωk,max

ω−4 for ω < Ωk,max , (6)

i.e, Px,ω is dominated by contributions from those objects near-
est the central black hole and has a characteristic frequency
dependence independent of the stellar distribution power law
index. Thus, it is possible to make robust predictions for the
scale of the jitter of Sgr A*, dependent primarily upon the max-
imum density and typical masses of stellar-mass objects in Sgr
A*’s immediate vicinity.
Figure 1 shows the characteristic displacements, given by

√

ωPx,ω, for a handful of possible stellar/remnant core mod-
els. In all but one the power spectrum follows it’s asymptotic
∝ ω−4 form (corresponding to ω−3/2 in the figure), despite the
fact that n(r) is not a single power law and µ2(r) ranges from
13.7M⊙

2 at large radii to 102M⊙
2 at small radii. What varies

amongst the power spectra is primarily the normalization.
The solid line shows our most optimistic case, with the

stellar and black hole components given by Equations (3)
and (4), respectively, truncated at the innermost stable circu-
lar orbit (ISCO) of the central black hole, located at roughly
1.2× 10−6 pc. In this case the displacement spectrum is domi-
nated by the black hole component, and produces fluctuations
in excess of a µas on 0.5yr timescales. If, however, we ig-
nore the remnant component altogether, the stellar component
given by Equation (3) produces the dot-dashed line, implying
that observable displacements will occur on 1yr timescales. In
both cases the typical displacements on year-long timescales

Figure 2.1: Power spectrum for the displacement of Sgr A* with surrounding
stellar density profile (Schödel et al., 2007) and fiducial black hole density profile
proportional to r−2, estimated by Broderick et al. (2011)

This model however is clearly inadequate in describing an SMBH-IMBH bi-

nary in the Galactic Center, as it neglects whatever fluctuations are induced by

surrounding environment of stars and stellar remnants. The stellar mass density

within the inner parsec has been approximated by Schödel et al. (2007) as the

broken power law:

ρ∗(r) ≃ (1.7± 0.8)× 106
(

r

0.22 pc

)−γ

M⊙pc−3 (2.4)

where γ = 1.2 for r < 0.22 pc and γ = 1.75 for r > 0.22 pc. The mass density

of stellar remnants is less constrained, though tens of thousands of stellar mass

black holes are estimated to migrate towards the center and induce strong mass

segregation (Miralda-Escudé & Gould, 2000; O’Leary et al., 2009; Alexander &

Hopman, 2009). Broderick et al. (2011) approximate a power spectrum for the

displacement of Sgr A*, assuming a stellar density profile described by Equation

(2.4) and fiducial model for stellar black hole density, proportional to r−2. They
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are comparable to those estimated in Reid & Brunthaler (2004)
(which find typical velocities of 0.3kms−1 and 0.07kms−1, pro-
ducing angular displacements of 8µas and 2µas due to the rem-
nant and stellar components, respectively4). This presumes that
we are justified in extrapolating the observed stellar density all
the way down to the ISCO, over four orders of magnitude. If
instead we force the stellar density to saturate at 0.01pc, the
smallest scale for which the stellar distribution has been mea-
sured, we obtain the long-dashed line. Even in this case observ-
able motions are present on sub-decade timescales. Finally, if
we make the extreme pessimistic choice of truncating the stel-
lar and black hole distributions at 0.01pc we obtain the short-
dashed spectrum, the curve of which is indicative of the lack
of objects with sufficiently short periods to generate the short-
timescale fluctuations.

3.1.3. Searching for a Massive Binary Companion

The hierarchical paradigm of galaxy formation also implies
the presence of supermassive black hole binaries at the cen-
ters of some galaxies. Initially the supermassive black holes
sink toward the center of the combined galaxy as a result of
dynamical friction due to stars in the reassembled bulge and
drag imparted by gas funneled into the galactic center by the
merger. However, this process becomes inefficient when the
binary separation shrinks to a few pc, at which point the stellar
encounters that carry away the orbital angular momentum be-
come rare. This is before gravitation radiation is able to drive
the system to merger within a Hubble time, resulting in the
so-called “final parsec” problem (Begelman et al. 1980; Roos
1981).
A number of solutions to the final parsec problem have been

suggested, including triaxial bulges (Merritt & Poon 2004),
massive perturbers (Perets & Alexander 2008), and interac-
tions with the merger enhanced gas density (Escala et al. 2004,
2005). Nevertheless, in some fraction of systems long-lived su-
permassive black hole binaries are expected (Begelman et al.
1980; Yu & Tremaine 2003; Milosavljević & Merritt 2003;
Gualandris & Merritt 2009). For this reason searches for su-
permassive binary companions have been performed in a va-
riety of systems, primarily using spectroscopic methods (Bog-
danović et al. 2009; Boroson& Lauer 2009; Decarli et al. 2010;
Liu et al. 2010).
In the specific context of Sgr A*, massive companions and

perturbers have been implicated for a very different reason: as a
solution to the paradox of youth, i.e., the presence of the mas-
sive, and therefore young, stars orbiting Sgr A* (Ghez et al.
2003). Formation of the “S-stars” (typically B-type stars) in
situ is thought to be precluded by the strong tidal forces from
Sgr A*. This has lead to the development of models in which
the stars are formed further out, where the restrictions are less
severe, and then transported into Sgr A*’s vicinity (Gerhard
2001). However, it is only possible to reach the small radii
observed if the S-stars were members of a very tightly bound
cluster, requiring a heretofore undetected massive component,
the prime candidate therefore being an intermediate mass black
hole (McMillan & Portegies Zwart 2003; Hansen & Milosavl-
jević 2003; Kim et al. 2004; Levin et al. 2005; Fujii et al. 2009;
Merritt et al. 2009; Fujii et al. 2010). That is, the transport
models imply the presence of a massive object located at a dis-
tance comparable to that of the S-star orbits, roughly 10−2 pc,
4 In Reid & Brunthaler (2004) the displacements due to remnants was twice

as large as that reported here due to their assumption of twice as much mass in
the black hole cusp.

Figure 2. Non-excluded region of the companion mass–orbital separation pa-
rameter space that can be probed by astrometry with µas precisions (cf. Hansen
& Milosavljević 2003). Thick solid lines show (from outside in) locations in
the parameter space with 1%, 5%, 25%, 67%, and 95% probabilities of not hav-
ing been previously detected by previous astrometric studies at 7mm with the
VLBA (violated in the upper right) while exhibiting projected position shifts
larger than a µas at some point over the next decade (violated in the lower
left). The dotted hatched area shows the approximate region described in the
text that is ruled out by 7mm VLBA studies. For reference, lines of constant
maximum angular deviation are shown for circular orbits by the dashed lines,
corresponding to 1µas (leftmost), 10µas, and 100µas (rightmost). Gravita-
tional merger timescales for circular orbits are shown by the thin solid lines,
ranging from 10−3 yr (leftmost) to 1Gyr (rightmost). The period of the orbit
(in the test particle limit) is shown along the top axis. Finally, the semi-major
axes of the S-stars are indicated by the arrows.

from Sgr A*.
Thus, in addition to the stochastic buffeting from stellar-mass

black holes and stars, Sgr A* may also move as a consequence
of a massive binary companion. Whether or not this is observ-
able astrometrically depends upon the orbital parameters, mass
of the perturber and timescale of observations. Some set of
these is already ruled out by the lack of an oscillatory signal
in the 7mm proper motion studies (Reid et al. 1999b; Reid &
Brunthaler 2004, 2005). If we assume circular orbits with pe-
riods short in comparison to the observation time5, these rule
out companion masses

m! 8× 104
( a
102AU

)−1
M⊙ , (7)

(see also Hansen & Milosavljević 2003). In the presence of
eccentricity this expression is not a hard limit, since fortuitous
orientations can result in small projected displacements.
Adopting a simple two-body model (i.e., ignoring the many-

body effects of the stellar/remnant cusp) we estimate the like-
lihood of a given set of orbital parameters both satisfying the
existing astrometric limits and executing deviations larger than

5 For decade-long observations, this is true for a " 0.01pc. Above 0.01pc
the orbital periods exceed 30yr, and thus only a small fraction of the orbit
would have been observed, decreasing the ability to probe these cases. Fur-
thermore, at these distances the velocity is nearly constant, and thus degenerate
with that due to the solar motion.

Figure 2.2: Estimated likelihood of SMBH-IMBH binaries to produce µas displace-
ments of Sgr A* within a decade (Broderick et al., 2011)

found that in the most optimistic case of a stellar and black hole cusp, µas dis-

placements occur on timescales of 0.5 years, while the most pessimistic case (which

considers only a truncated stellar density extending up to 0.01 pc) produces µas

displacements within a decade.

Given this additional Brownian noise, Broderick et al. (2011) adopted the two-

body model of an SMBH-IMBH binary to estimate likelihoods of certain orbital

parameters to induce µas deviations on sub-decade timescales, while necessarily

satisfying already existing observational constraints. Sgr A* has already been

subject to mm-VLBI observations, which have placed upper limits on the veloc-

ity component perpendicular to the galactic plane at −0.4 ± 0.9 km s−1 (Reid

& Brunthaler, 2004). Uncertainties on this values may be attributed to galactic

precession or the position wander of referenced extragalactic radio sources (see

Hosokawa et al., 2002), alongside the presently limited accuracy of radio obser-

vations. 7mm proper motion studies have additionally failed to find evidence for
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oscillatory signals with periodicities within ∼ 20 yr (Reid et al., 1999; Reid &

Brunthaler, 2004). Broderick et al. found that this model, when considering circu-

lar orbits with periods comparable to observation timescales, rules out companion

masses with an associated semi-major axis a

MIMBH ≳ 8× 104
(

a

0.48 mpc

)−1

M⊙ (2.5)

Reid & Brunthaler (2004) provide additional limits on a possible binary black hole

in the Galactic Center, based on proper motion estimates for Sgr A*. They found

that with given proper motion measurements, we can roughly exclude IMBHs of

mass ≳ 104 M⊙ and semi-major axes of 103 − 105 AU.

2.2 IMBHs as Perturbers of Stellar Orbits

Key to much of our understanding of the properties of Sgr A* have been the S-stars,

which orbit within the inner most arcsecond. Their orbital dynamics overwhelm-

ingly support the existence of a single point mass of ∼ 4 × 106 M⊙ at a distance

∼ 8 kpc, providing some of the most conclusive evidence that Sgr A* is in fact a

supermassive black hole (Gillessen et al., 2009) . A thoroughly examined S-star

has been S2, which possesses an orbit of ∼ 16 yr and has been most frequently

used to estimate the mass of Sgr A*. While the S-stars are all modeled by Ke-

plerian orbits, S2 provides the best opportunity to potentially observe deviations

associated with relativistic effects or the presence of dark stellar remnants given

its relative brightness.

Being young stars in an environment that hinders star formation, the S-stars

have been the subjects of infalling star cluster models in which an IMBH is a

necessary transport vehicle (Hansen & Milosavljević, 2003; Zwart et al., 2003;
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Freitag et al., 2006). Additionally, the random orientation of the S-star orbits

and distribution of eccentricities have been reproduced in numerical simulations of

Myr-long interactions between the S-stars and an IMBH of mass ≳ 1.5× 103 M⊙

(Merritt et al., 2009; Perets et al., 2009; Gualandris & Merritt, 2009). The presence

of an IMBH near the S-stars has been theoretically constrained, with Mikkola &

Merritt (2008) demonstrating that an IMBH of mass ∼ 10−3 MSgr orbiting at a

distance of 1 mpc would destabilize the S-star system, and Gillessen et al. (2010)

concluding that the phase space of S2 implies that no mass larger than 0.02MSgr

can exist within its orbit.

Gualandris et al. (2010) investigated the short term effects that an IMBH may

have on the star S2 with N -body simulations and orbital fitting techniques, taking

into account non-trivial effects induced by general relativity. They consider a three-

body model in which the IMBH and S2 are placed in Keplerian orbits around the

central SMBH, and record the evolution of the orbital parameters of S2 over 50

years (during which the star completes three full orbits). In such a short timescale,

effects of other S-stars are negligible and any variation can be attributed to the

IMBH; oscillations potentially indicative of Kozai mechanisms (Kozai, 1962) are

also irrelevant, as in each simulated scenario the periods of these mechanisms

exceed other (namely GR) precession timescales. For masses MIMBH ≳ 2000 M⊙

and semi-major axes a ≲ 3 mpc, an IMBH induces on average over one orbit a

shift in apoapsis greater than the estimated relativistic shift of ∼ 0.83 mas. Such

is a distinguishable signature on the angular momentum (eccentricity and orbital

plane) of S2, potentially observable once S2 returns to its periapse. Gualandris

et al. additionally estimated the detectability of an IMBH perturbing S2, fitting

their simulated data sets with the same code as Gillessen et al. (2009) to construct

the full set of parameters describing the orbit of S2 and gravitational potential of
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The star S2 as dynamical probe for IBHs 1149

Figure 2. Average changes in the orbital elements (semimajor axis, ec-
centricity, inclination, position angle of the ascending node, periapsis and
apoapsis) of star S2 over one full orbit, versus the mass ratio of the black
hole binary. Different symbols are for different initial semimajor axes of the
binary. Each point is an average over the 12 orientations of the IBH/MBH
orbital angular momentum vector. The dotted lines represent the GR shift
in the periapse and apoapse.

The time-scale for Kozai oscillations can be written as (Kinoshita
& Nakai 2007)

TK = 4K
3
√

6π

P 2
out

eout

MMBH + m∗

MIBH

(
1 − e2

out

)3/2
, (13)

where eout and Pout are the period of the inner and outer binary,
eout is the eccentricity of the outer orbit and K is a numerical co-
efficient which depends only on the initial values of the relative
inclination angle α, the inner binary eccentricity einn and the inner
binary argument of periapsis ϖ . The maximum eccentricity emax

attained by the inner binary is also a function of the initial values
of α, einn and ϖ only. Fig. 4 shows TK as a function of the black
hole binary mass ratio for the assumed values of the eccentricity
and for two allowed separations. We find that TK is always longer
than S2’s GR precession time-scale of 2.5 × 104 yr for a = 30 mpc.
For the remaining case a = 10 mpc, TK is short enough only for
q ! 2.5 × 10−4 and e ! 0.7. This restricts the applicability of
the Kozai mechanism to a small subset of our simulations, in con-
trast with the results shown in Fig. 2 and in the following section.
We conclude that the Kozai mechanism is not the dominant effect
producing changes in orbital e and i in our simulations. In those
cases where it is potentially relevant, the eccentricity is predicted to
oscillate between emin = 0.24–0.74 and emax = 0.89–0.99 over one

Figure 3. Mean variation of the orbital plane of star S2 as a function of the
binary mass ratio. For each combination of binary mass ratio, semimajor
axis and eccentricity, the results are averaged over the 12 orbital orientations
of the IBH.

Figure 4. Time-scale for Kozai oscillations in star S2 as a function of the
black hole binary mass ratio for different values of the binary eccentricity.
The left-hand panel refers to simulations with a = 10 mpc, while the right-
hand panel is for a = 30 mpc. The horizontal lines mark the GR precession
time-scale for S2.

Kozai period, depending on the values of α and ϖ . This implies
variations of the order of 2 × 10−5 to 6 × 10−3 over the integration
time of 50 yr (for a = 10 mpc).

The apoapsis shift due to perturbations from the IBH is very
sensitive to the binary parameters. In the case of q ! 5 × 10−4

and a " 3 mpc, the shift over one revolution due to the IBH be-
comes larger than the relativistic shift. This suggests a variation in
the orbital elements which is potentially observable with current
instrumentation.

However, the observability of variations in the orbit of S2 depends
on several factors. In the following section we thoroughly examine
all such factors and use orbital fitting to determine whether an IBH
is detectable via ongoing monitoring of the S-cluster. Theoretically,
it would be possible to use other S-stars to investigate the effects of
a hypothetical IBH. Given that the shifts in the apparent location of
periapsis and apoapsis depend only on the eccentricity and not on
the semimajor axis of the stellar orbit, it would seem appropriate to
consider all stars with e ! 0.8 for such an analysis. From an ob-
servational point of view, however, S2 is the only star in the sample
which is bright enough and not affected by confusion to allow for
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(a) Average changes of the orbital elements (semi-
major axis, eccentricity, inclination, position angle
of ascending node, periapse, and apoapse) of S2 in a
full orbit versus the mass ratio q ≡ MIMBH/MSMBH
in simulations performed by Gualandris et al. (2010).
Dotted lines represent GR shift in periapse and
apoapse.

1148 A. Gualandris, S. Gillessen and D. Merritt

Figure 1. Time-scales associated with orbital evolution in our models. Solid
lines show the GW time-scale, equation (7), for a black hole binary with
q = 10−4 (top) and q = 10−3 (bottom), for four different values of the
eccentricity e = 0, 0.5, 0.7, 0.9. Dot–dashed lines show the GR precession
time-scale for two different values of the eccentricity: e = 0 (upper line) and
e = 0.9 (lower line). The vertical dotted lines represent the adopted values
for the binary initial semimajor axis. The filled grey region indicates the
estimated ages of the S-stars, while the striped area shows the radial range
of S2’s orbit.

main-sequence lifetime (∼107 yr) of a 20 M⊙ star for all initial
configurations excepting the cases a = 0.3 mpc and e ≥ 0.7. In the
former runs, it is justified to associate our initial parameters for the
IBH/MBH binary with the parameters at some much earlier time,
e.g. the epoch preceding formation of the S-stars. In the latter runs,
the orbit of the IBH at some much earlier time would have been
larger and/or more eccentric. The maximum relative variation of the
binary semimajor axis in the N-body integrations is !a/a ∼ 10−3,
while the absolute variation of the eccentricity is !e ∼ 10−2.

3 I B H P E RTU R BAT I O N S

In the Schwarzschild metric, the argument of periapse ϖ evolves
due to in-plane precession. The two remaining angles that define the
orientation of the orbit, i, the inclination and #, the position angle of
the ascending node, are fully conserved in the relativistic two-body
problem.1 The semimajor axis and eccentricity are conserved at the
1-PN level, and we expect very small deviations due to higher order
PN corrections in the integrations (Soffel 1989). In the limit of small
star-to-black hole mass ratio, the semimajor axis and eccentricity in

1 We follow the standard practice of using the plane of the sky as the reference
plane for defining (#, i).

the PN approximation are given by (Soffel 1989)

a = −GM

2E

[
1 + 7

2
E
c2

]
, (8)

e =

√

1 + 2E
G2M2

(
1 + 17

2
E
c2

) (
J 2 + 2

G2M2

c2

)
, (9)

where

E = 1
2
v2 − GM

r
+ 3

8
v4

c2
+ GM

2rc2

[
3v2 + GM

r

]
(10)

is the specific PN energy and

J = |x × v|
[

1 + 1
2

v2

c2
+ 3GM

rc2

]
(11)

is the specific angular momentum. Here x and v are the relative
position and velocity vectors between the star and the MBH, M is
the total mass and c is the speed of light.

The presence of the other S-stars introduces small deviations from
spherical symmetry in the gravitational potential, but the effect on
the orbital elements over these short time-scales is negligible, as we
show in Section 5. Therefore, the variations that we observe in the
orbital elements of star S2 in our simulations, namely the semimajor
axis, eccentricity, inclination and position angle of the ascending
node, can be attributed to perturbations from the IBH.

Fig. 2 summarizes the changes in the orbital elements of S2
found in the N-body integrations. Plotted are the variations over
one revolution averaged over the 12 different orientations of the
initial IBH/MBH orbit.

The dotted lines in the periapsis and apoapsis panels indicate
the variations due to GR. The shift in the periapse corresponds to
an observable angle !$p = !$a(1 − e)/(1 + e), where !$a is
defined in equation (3). Note that the variations in the inclination
i and position angle # of the ascending node reach values close
to 1◦ for the most massive IBHs considered. This is of the same
order as the current observational accuracy (∼0.◦7). In 50 yr, this
value will drop to about 0◦.4, assuming there are no technological
improvements.

While precession induced by the PN terms is restricted to the
orbital plane, an IBH induces more general changes in the orbital
elements, including changes in the direction of the orbital angular
momentum vector. We measure the latter via the angle

cos φ =
(

Li · L f

Li Lf

)
. (12)

Fig. 3 plots φ for all the runs, after averaging over the 12 different
IBH orientations.

The changes in the orbital plane of S2 are larger for more massive
IBHs and can reach values of ∼1◦ for q = 10−3. Out-of-plane motion
is also affected by the size of the MBH/IBH binary orbit such that
changes are largest for a ! 10 mpc.

The three-body system composed of MBH, IBH and S2 is rem-
iniscent of a Kozai triple (Kozai 1962). However, the changes that
we observe in the orbital elements are not generally attributable to
the Kozai mechanism. Kozai oscillations can be induced if (i) the
MBH–S2–IBH system can be regarded as a hierarchical triple, with
well-separated orbital periods for the inner and outer orbit; (ii) the
period predicted for the Kozai oscillations is shorter than that of
any other precessional period, in this case, GR precession; (iii) the
outer orbit is largely inclined with respect to the inner orbit. The
first condition is only satisfied in the runs with a = 10, 30 mpc.
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(b) Time-scales associated with the orbital evolu-
tion in simulations performed by Gualandris et al.
(2010). Solid lines represent GW time-scale for a
black hole binary with q ≡ MIMBH/MSMBH = 10−4

(top panel) and q = 10−3 (bottom panel), for eccen-
tricities e = 0, 0.5, 0.7, 0.9. Dot-dashed lines repre-
sent GR precession time-scale for e = 0 (upper pink
line) and e = 0.9 (lower pink line). Vertical green
dotted lines represent adopted value for initial semi-
major axis of the binary.

Figure 2.3: Time-scales and results of a N -body simulations performed by Gua-
landris et al. (2010), studying the effects of a single IMBH on the orbit of the star
S2.
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the SMBH. Data that did not adequately fit the relativistic equations of motion

were identified as reflecting discernible IMBH perturbations. For IMBH masses

of 400 M⊙, 103 M⊙, 2 × 103 M⊙, and 4 × 103 M⊙, the percentage of detectable

IMBHs are 15, 39, 51, and 66 per cent, respectively.

2.3 Tentative Conclusions

From the literature we find that considerable important work has been performed

on estimating and constraining the existence of a single IMBH in the Galactic

Center. However, various theories postulate the existence of a population of IMBHs

as opposed to just one, meaning that it is imperative that we estimate dynamical

signatures that reflect the presence of a number of massive dark objects. The

following chapter will describe models for these populations that are analyzed in

this work, along with the numerical methods used to investigate their possible

cumulative effect on the position of Sgr A* and orbit of S2.
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CHAPTER 3

METHODS

3.1 Theoretical Models

3.1.1 Surrounding Stellar Population

In this work, I consider a central black hole with mass Mcbh = 4.4×106 M⊙ within

a stellar cluster described by a Hernquist (1990) spherical density profile

ρH(r) =
Mc

2π

a

r(r + a)3
(3.1)

where Mc = 4.4× 106 M⊙ is the total cluster mass, and a = 1 pc the scale length.

In the treatment outlined by Tremaine et al. (1994), the Hernquist model is a

special case in a family of spherical stellar models with a similar outer density

profile ρ ∝ r−4 and central density cusp ρ ∝ rη−3 (0 < η ≤ 3), corresponding to

η = 2. I adopt a Hernquist profile defined by the above set of parameters as a

relatively close approximation to the actual broken law stellar density in the inner

parsec (see Equation (2.4)).

The cumulative mass of the stellar cluster contained within a radius r is calcu-

lated through an integration of the above density profile:

MH(< r) =

∫ r

0

4πs2ρH(s)ds

=
Mcr

2

(r + a)2
(3.2)

inducing a gravitational acceleration a and potential Φ on an object with position
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vector r:

aH(r) = −GMH(< r)

r2
r̂

= − GMc

(a+ r)2
r̂ (3.3)

ΦH(r) =
∫ ∞

r

aH(s) · ds

=

∫ ∞

r

− GMc

(a+ s)2
ŝ · ds

= −GMc

a+ r
(3.4)

Tremaine et al. provide an explicit phase space distribution function in terms of

energy per unit mass, assuming natural units where G = Mc = a = 1 and mass

ratio µ = MBH/Mc:

f1(E) =
2Γ(2)

27/2π5/2µΓ(3
2
)
E−1/2 (3.5)

For any standard units of length, mass and time, Equation (3.5) becomes:

f1(E) =
2Γ(2)

27/2π5/2(GMca)3/2µΓ(
3
2
)
E−1/2 (3.6)

3.1.2 Stellar Mass Black Holes

In defining a test density profile for black holes of characteristic mass 10 M⊙ and

100 M⊙, I adapt the methods of Miralda-Escudé & Gould (2000) to reflect new

understandings of the stellar density profile in the inner parsec. Miralda-Escudé

& Gould follow Bailyn et al. (1998) by supposing that ordinary stars of mass

≳ 30 M⊙ in the galactic bulge will undergo core collapse and form black holes of

mass ≲ 7 M⊙. Since the stellar mass black holes form from an already existing

system of stars, Miralda-Escudé & Gould constructed a density profile that is

necessarily a fraction of that of the stellar cluster, determined according to the
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Salpeter (1955) initial mass function. Given a characteristic black hole mass MBH

and stellar density profile ρ∗(r):

ρSBH(r) = Cρ∗(r), C ≡
(
0.23 M⊙

⟨MBH⟩

) 1
2

(3.7)

To be self-consistent, I suppose the surrounding stellar system is described by a

Hernquist profile and set ρ∗(r) = ρH(r) (see Equation (3.1)). Two distinct stellar

black hole density profiles are defined by considering ⟨MBH⟩ as 10 M⊙ and 100 M⊙.

With this definition, the mass contained within a certain radius, acceleration, and

potential according to this stellar black hole density profile is proportional to that

of the stellar Hernquist profile:

MSBH(< r) = C MH(< r)

= C
Mcr

2

(r + a)2
(3.8)

aSBH(r) = C aH(r)

= − CGMc

(a+ r)2
r̂ (3.9)

ΦSBH(r) = C ΦH(r)

= −CGMc

a+ r
r̂. (3.10)

3.1.3 Intermediate Mass Black Holes

This work is particularly concerned with IMBH density profiles of characteristic

mass 103 M⊙ and 104 M⊙, informed the results of theoretical simulations studying

the formation and evolution of infalling cluster systems. From the literature I have

selected two density profiles to investigate, both of which are of the form

ρIMBH(r) = ρ0

(
r

r0

)−γ

(3.11)
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Appendix A offers an in-depth calculation and solution of the enclosed mass, accel-

eration, and gravitational potential associated with this generalized density profile.

As this density profile diverges as r approaches 0, an inner cut-off radius is defined

as the semi-major axis ac associated with a gravitational wave time of coalescence

equaling 10 Gyr. (See Equation (1.19)).

For IMBHs of mass ∼ 1000 M⊙, Zwart et al. (2006) predict that ∼ 50 will be

present within 10 pc of Sgr A*. They provide no explicit density profile, though

general predictions of the final mass-segregated distribution of stellar remnants

range from flat-cores to extreme cusps (Alexander & Hopman, 2009; Merritt, 2010,

e.g). With this in mind I adopt a fiducial ρ ∝ r−2 model (otherwise known as the

isothermal sphere) to fit the estimated number of ∼ 1000 M⊙ IMBHs provided by

Zwart et al.:

ρZ06(r) =
5.0× 103

4π

(
r

pc

)−2

M⊙pc−3 (3.12)

This possesses the following enclosed mass, acceleration, and potential:

MZ06(< r) = 5.0× 103 M⊙

(
r

pc

)
, (3.13)

aZ06(r) = −6.86× 107
cm
s2

(
r

pc

)−1

r̂, (3.14)

ΦZ06(r) = −2.12× 1012
[
ln
(

r

pc

)
+ 42.6

]
erg (3.15)

Note that according to MZ06(< r), the nearest 1000 M⊙ IMBH would be approxi-

mately 0.2 pc from the center.

For IMBHs of mass ∼ 104 M⊙, I consider the density profile obtained by

Mastrobuono-Battisti et al. (2014) in their work simulating twelve in-spiraling

nuclear star clusters:

ρM14(r) = 6.20× 103
(

r

pc

)−2.32

M⊙pc−3 (3.16)
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From the density profile, I may calculate the enclosed mass, gravitational accel-

eration, and potential as

MM14(< r) = 1.15× 105 M⊙

(
r

pc

)0.68

, (3.17)

aM14(r) = −1.60× 106
cm
s2

(
r

pc

)−1.32

r̂, (3.18)

ΦM14(r) = −1.54× 1013
(

r

pc

)−0.32

erg (3.19)

3.1.4 Orbital Parameters for S2

The Keplerian orbit of S2 and other S-stars have been fitted by Gillessen et al.

(2009) to describe six parameters: semi major axis a, eccentricity e, inclination i,

angle of the line of nodes Ω, angle from ascending node to pericenter ω, and the

time of pericenter passage tP . They implement various relativistic effects into the

orbital fitting routine and marked the position of the center of mass by the near

infrared flares of Sgr A* (see Genzel et al., 2003), following standard procedures

of χ2 fit (Press et al., 1994) to calculate statistical errors. I include parameters

for two of the other brightest S-stars beyond S2 in Table 3.1, as structure of the

simulation code (see Section 3.2) is such that one could input the parameters of

any S-star into the simulated orbital system and investigate the short-term effects

of a black hole population on its orbit.

3.2 Simulation Structure

To model and simulate an orbital system involving a variable black hole density

profile, I developed a Python package using the open-source, multi-purposeN -body
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Star a[”] e i [◦] Ω [◦] ω [◦] tP [yr-2000]
S1 0.508±0.028 0.496±0.028 120.82±0.46 341.61±0.51 115.3±2.5 0.95±0.27
S2 0.123±0.001 0.880±0.003 135.25±0.47 225.39±0.84 63.56±0.84 2.32±0.01
S8 0.411±0.004 0.824±0.014 74.01±0.73 315.90±0.50 345.2±1.1 -16.2±0.4

Table 3.1: Examples of Keplerian fits made by Gillessen et al. (2009) for the S-
stars, which orbit in the inner arc second of the galactic center. For this work, I
examine the effects produced on Keplerian elements of S2.

software package REBOUND Rein & Liu (2012). REBOUND is designed to integrate a

variety of gravitational systems and supporting both collisional and collision-less

(classical) dynamics; upon importing the package simulations may be initialized

and performed via a provisional Python module. The Python package created for

the purposes of this work used REBOUND to randomly realize and integrate two types

of orbital systems: (1) Sgr A* and S2 along with varied IMBH/stellar populations,

and (2) Sgr A* and S2 affected by a smooth density profile matching those of the

varied IMBH populations. This is differentiated to investigate whether the effects

of discrete objects on the orbital parameters of S2 are significantly different from

a smoothly distributed mass. To numerically solve the corresponding equations

of motion, I use the integrator Mercurius, a hybrid integration scheme provided

by REBOUND and developed by its creators (Rein & Spiegel, 2014; Rein & Tamayo,

2015). For an explanation and discussion of numerical methods, see Section 3.3.

Error is kept at a minimum by identifying the optimal time step for each simulated

scenario, which ranged from 20 hours to 80 hours.

To initialize the program, I place at the origin a resting SMBH of mass

MSMBH = 4.4 × 106 M⊙, along with the star S2 described by its mass and or-

bital parameters. These act as the only active particles of the simulation; all other

added particles are treated as semi-active, gravitationally interacting with the cen-

tral massive object and the S-star, but not with each other. The properties of the
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integrator are further set such that the simulation merges particles that collide

with each other, preserving mass and momentum, and tracks energy that is lost

due to collisions. Based on the density profile being simulated, I determine an

outer-most distance at which we draw remaining particles. For stellar and inter-

mediate mass black holes, this distance was set as rmax = 1.0 pc. For the stellar

control, this was 0.1 pc. Similarly, an inner-most distance is calculated to mark

the absolute closest distance from Sgr A* an orbiting objects may be. For stellar

and intermediate-mass black holes, this is constrained by their gravitational wave

timescale (Peters, 1964, or Equation (1.19)), and for stars, this is their tidal radius

(Equation (1.13)).

To randomly distribute particles of mass m with a density profile ρ, I first

calculate the number present in the simulation as

Np =
1

m

∫ rmax

rmin

Mρ(r)dr (3.20)

whereMρ(r) describes the total mass contained within a radius r. The actual num-

ber of distributed particles is determined by drawing from a Poisson distribution

with Np as the mean. The distance of each particle from the origin is then ob-

tained through an inverse transform sampling method, with f(r) = M(r)/(Mtot)

serving as the cumulative density function (CDF) for particle position. In this

method, I uniformly draw a value u from the interval (f(rmin), f(rmax)) ⊂ [0, 1],

let mu = Mtot ∗ u, and calculate the particle position as r = f−1(mu). The unit

directional vector r̂ = (x, y, z) of the particle position is then determined via sphere

point picking: given random variate u ∈ [−1, 1] and θ ∈ [0, 2π),

x =
√
1− u2 cos θ (3.21)

y =
√
1− u2 sin θ (3.22)

z = u (3.23)
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For each particle at a known position r, the phase space distribution of the or-

bital system – estimated as (3.5) – depends only on velocity. One can approximate

then that within a sufficiently thin enough spherical shell, centered at that radius,

there exists a similar dependency. As such, I inversely derive a CDF describing

the distribution of bound velocities (v <
√
−2Φ) for approximately 1000 spherical

shells of thickness 10−3 rmax situated between rmin and rmax. Given a position r for

a particle, I determine what spherical shell it falls into to calculate the appropriate

velocity CDF. The particle speed is then randomly drawn from this CDF through

the inverse transform sampling method. Upon drawing this magnitude, the direc-

tion of the velocity vector is randomly determined and ensured to be perpendicular

to the position vector.

Having determined the position and velocity vectors for each particle, I calcu-

late the following orbital elements and add the particles with said elements specified

to the orbital simulation:

• Semi-major axis: a =
GMcbhr

2GMcbh − v2r

• Eccentricity: e = |e| =
∣∣ v× h
GMcbh

− r
r

∣∣, h ≡ r× v

• Inclination: i = arccos
(
hz

|h|

)

• Longitude of ascending node: Ω =


arccos

(
nx

|n|

)
, ny ≥ 0

2π − arccos
(
nx

|n|

)
, ny < 0

,

n ≡ (−hy, hx, 0)

• Argument of periapses: ω = arccos
(
n · e
|n||e|

)
• True anomaly: ν = arccos

(
e · r
|e||r|

)
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For simulations testing the effects of smooth (as opposed to discrete) density

profiles, I do not add any other particles besides Sgr A* and S2. Instead, I define

an additional force emulating the acceleration induced by the density profile in

question. No additional significant dynamical or velocity-dependent forces are

incorporated into the simulation due to the short length of the integration.

For each density profile, I performed 1500 different random realizations of the

associated particle system surrounding Sgr A* and S2. All simulations were in-

tegrated to an end-time of 16 yr, passing a list of 10000 output times. Between

each call of the integration method, I record the position and velocity Cartesian

components of Sgr A* and S2, the various orbital elements of S2 (a, e, i, Ω, and

ω), and the total number of particles remaining in the simulation. Relative energy

error was calculated, and simulations reaching relative energy errors greater than

10−7 (1× 10−4 for stellar control) were discarded from the analyzed dataset.

3.3 Numerical Algorithms

These simulations use the hybrid symplectic integrator Mercurius, which com-

bines the WHFast and IAS15 integrator modules already built into REBOUND. Tra-

ditionally, symplectic integrators are ideal for integrations of orbital systems as

they conserve necessary invariants such as phase-space density. However, they

are significantly less capable of maintaining such quantities when the time step is

adaptive to close encounters (Gladman et al., 1991; Hairer et al., 2006) or when

particles experience non-conservative forces. Mercurius works similarly to the

MERCURY package (Chambers, 1999) by switching to a non-symplectic algorithm

during close encounters, allowing the integrator to adaptively reduce the step-size
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while maintaining a similar level of accuracy. Below is a review of symplectic

theory, along with an explanation of the WHFast and IAS15 algorithms.

3.3.1 Theory of Symplectic Integrators

Generally, the orbits of objects within a system dominated by a massive central

body are regarded as weakly perturbed Keplerian orbits. Thus, for long-term

integrations researchers often adopt schemes which are designed to numerically

solve slightly perturbed Hamiltonian systems while better conserving quantities

like energy or angular momentum.

The notion of symplecticity arises from such efforts. Consider a system of n

particles, with Ω ⊂ R2n corresponding to the phase space of the system. An

element of Ω is denoted as (q,p), where q and p consist of n components indexing

the position and momentum of each particle respectively. We say Ω possesses a

symplectic structure if there exists some mapping ω : Ω× Ω → R that is

• bilinear: ω(
∑n

i=0 aiui,
∑n

j=0 bjvj) =
∑n

j=0

∑n
i=0 aibjω(ui,vj) for all ui,vj ∈

Ω and ai, bi ∈ R,

• alternating: ω(v,v) = 0 for all v ∈ Ω,

• and non-degenerate: If ω(u,v) = 0 for all v ∈ Ω, then u = 0.

We can define a symplectic bilinear form ω =
∑n

i=1 dqi ∧ dpi, where dqi ∧ dpi is a

differential two-form defined as

dqi ∧ dpi : Ω× Ω → R ((q1,p1), (q2,p2)) 7→ q1ip2i − q2ip1i (3.24)
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A smooth complex function H ∈ C∞(Ω) gives rise to a Hamiltonian system of

ordinary differential equations:

q̇i =
∂H

∂pi
ṗi = −∂H

∂qi
(3.25)

Liouville’s theorem states that the time evolution of the Hamiltonian is a volume-

preserving transformation of phase space, meaning that the phase space volume

occupied by a system evolving in accordance to Hamilton’s equations of motion will

remain constant through time. This requires that the exact solutions of Hamilto-

nian equations of motion conserve energy and preserve the underlying symplectic

form: supposing (q̃, p̃′) are the transformed coordinates of (q,p) from t = 0 to

t = τ ,
∑

dqi ∧ dpi =
∑

dq̃i ∧ dp̃i and H(q, p) = H(q̃, p̃). One would naturally

seek, then, a numerical integrator that conserves H and dq ∧ dp at each time step;

however such an integration scheme cannot exist for non-integrable Hamiltonian

systems (Ge & Marsden, 1988). Thus, we require a compromise: a symplectic

integrator that conserves the symplectic structure provided by dq ∧ dp.

Ruth (1983) first developed an explicit symplectic scheme for separable Hamil-

tonians of the form H = T (p) + V (q). One can construct an n-th order explicit

symplectic integrator which approximates the original Hamiltonian flow by repeat-

edly composing symplectic mappings (q, p) 7→ (q′, p′):

q′ = q + ciτ

(
∂T

∂p

)
, p′ = p (3.26)

and

q′ = q, p′ = p− diτ

(
∂V

∂q

)
(3.27)

The numerical coefficients ci, di are determined such that the resulting mapping

reflects a Taylor expansion of the solution to the Hamiltonian, up to order τn. In
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fact, the first order symplectic mapping (ci = di = 1) exactly describes the time-τ

evolution of a slightly perturbed Hamiltonian

H̃ = H + τH1 + τ 2H2 + · · · (3.28)

where H = T (p) + V (q) is our original Hamiltonian and

H1 =
1

2
HpHq, H2 =

1

12
(HppH

2
q +HqqH

2
p ), H3 =

1

12
HppHqqHpH2, . . . (3.29)

(see Dragt & Finn, 1976; Dragt et al., 1988, for in-depth proof and discussion.).

A more generalized symplectic mapping method, first devised by Wisdom

(1982, 1983) and properly formulated by Wisdom & Holman (1991), exploits the

commonly referred to averaging principle of Lagrange and Laplace. In this princi-

ple Lagrange and Laplace argue that, over a long period of time, rapidly oscillating

terms average out and provide no net effect on a system’s evolution; significant evo-

lutionary contributions accrue from secular terms (see Moulton, 2012, for historical

review). Traditional integration schemes relied on this principle to justify aver-

aging over or removing high frequency oscillations from the averaged equations

of motion to reach approximate solutions (e.g. Schubart, 1964, 1968). Wisdom

and Holman realized that, at the same level of accuracy, one can selectively add

high-frequency terms to construct a fully integrable Hamiltonian that closely ap-

proximates the original. Inspired by Chirikov (1979), they chose rapidly oscillating

terms that sum to trivially integrable periodic delta functions; for example, letting

H be an unperturbed and integrable Hamiltonian and H̃ = H −H′ the perturbed

Hamiltonian in question, a second-order mapping corresponding to H̃ is

Hmap = H − 2πδ2π(Ωt− π)(H′) (3.30)

where δ2π(x) is a periodic delta function with period 2π, ∆t is the integration time

step, and Ω = 2π/∆t is the mapping frequency.
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3.3.2 WHFast Algorithm

The REBOUND Wisdom-Holman integrator is a re-implementation of the Wisdom-

Holman method that significantly improves the Kepler solver and numerical stabil-

ity of transformations between Cartesian and Jacobi coordinates. WHFast functions

by re-writing the Hamiltonian of a system with Jacobi coordinates to separate it

into easily integrable parts. For a system of N particles, we can write the Hamil-

tonian as the sum of three terms using conjugate mass and momentum:

H = H0 +HK +HI (3.31)

where

H0 =
p′2
0

2m′
0

,

HK =
N−1∑
i=1

p′
i

2m′
i

−
N−1∑
i=1

Gm′
iMi

|r′i|
, and

HI =
N−1∑
i=1

Gm′
iMi

,
|r′i| −

N−1∑
i=0

N−1∑
j=i+1

Gmimj

|ri − rj|

m′
i ≡

miMi−1

mi +Mi−1

, Mi ≡
i∑

j=0

mj,

p′
i ≡ m′

iv′
i, v′

i ≡ vi −
1

Mi−1

i−1∑
j=0

mj ṙj (3.32)

H0 describes the motion of the center of mass (r′0) along a straight line, which

allows the system to integrate particles with respect to any inertial frame of refer-

ence. The ith term of HK reflects the Keplerian motion of the ith particle around

the center of mass of all interior particles. HI accounts for the interactions between

each of the particles. H0 and HI already possess analytical solutions, while HK

can be iteratively solved. The symplectic integrator is then constructed for the

total Hamiltonian using the operator split method in Jacobi and Cartesian coor-

dinates (see Saha & Tremaine, 1992). Denoting the evolution of particles under a
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Hamiltonian H for a time dt by the operator Ĥ(dt), the system evolves under the

Drift-Kick-Drift scheme, also referred to as the Wisdom-Holman map:

Step 1 (Drift): Apply ĤK(dt/2) ◦ Ĥ0(dt/2)

Step 2 (Kick): Apply ĤI(dt)

Step 3 (Drift): Apply ĤK(dt/2) ◦ Ĥ0(dt/2)

As long as HK and H0 commute, the ordering of the first and last step do not

matter and can be combined if the system is evolved for multiple time steps. To

adjust for the relatively large short-term oscillations that symplectic integrators

induce, WHFast also implements by default an 11th-order symplectic corrector. For

a full derivation of symplectic correctors, see Wisdom et al. (1996) and Mikkola &

Palmer (2000).

3.3.3 IAS15 Algorithm

IAS15, alternatively, is a non-symplectic approach to orbital integration. It is a

15th order implicit integrator with adaptive time stepping, capable of high pre-

cision calculations even with velocity-dependent forces. The algorithm finds an

approximate solution for the equation

ẍ = F [ẋ, x, t] (3.33)

where ẍ is the acceleration of the particle, and F is the force experienced by the

particle dependent on velocity ẋ, position x, and time t, by expanding the equation

into a truncated series of t,

ẍ[t] ≈ ẍ0 + a0t+ a1t
2 + · · ·+ a6t

7. (3.34)
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This can be re-written in terms of the time spacing h ≡ t/dt and bk = akdt
k+1,

where dt is the step size:

ẍ[h] ≈ ẍ0 + b0h+ b1h
2 + · · ·+ b6h

7. (3.35)

To solve for velocity and position at an arbitrary time during and at the end of

the time step, we integrate the above equation once and twice respectively:

ẋ[h] ≈ ẋ0 + hdt

(
ẍ0 +

h

2

(
b0 +

2h

3
(b1 + · · · )

))
(3.36)

x[h] ≈ x0 + ẋ0hdt+
h2dt2

2

(
ẍ0 +

h

2

(
b0 +

2h

3
(b1 + · · · )

))
(3.37)

Rein & Spiegel (2014) ensure machine precision accuracy of this approximation

by implementing and improving the Gauß-Radau algorithm, a 15th-order Runge-

Kutta integrator pioneered by Everhart (1985). This algorithm uses an initial

time spacing of h = 0 (at which position and velocity is already known) to deter-

mine ẍ0 and the coefficients ak, bk, later approximating the integral of ẍ[h] with

Gauß-quadratures. Each iteration informs a recalculation of the coefficients in the

expansion of ẍ[t] and ẍ[h], thereby increasing their accuracy. A 15th-order scheme

is constructed through the use of a quadrature with 8 function evaluations. Step

size is automatically controlled by a dimensionless parameter ϵ ≪ 1, chosen such

that the function x[t] is smooth within one time step (see Rein & Spiegel, 2014,

for continued detailed explanation).
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CHAPTER 4

RESULTS

4.1 Measured Gravitational Effect on Sgr A*

The results for the evolving position and velocity of Sgr A* shared various char-

acteristics across the simulated density profiles, arguably reflecting the inherent

stochastic nature of the problem at hand. Each density profile possessed a nor-

malized distribution of velocity magnitude and total angular displacement relative

to initial position of Sgr A* well-fit to a gamma distribution. Such a distribu-

tion should naturally arise as a consequence of the principle of maximum entropy

(Jaynes, 1957a,b), which states that the probability distribution best representing

present knowledge necessarily has the largest entropy; this minimizes the amount

of prior information initially built in. The gamma distribution is appropriately the

maximum entropy probability distribution for fixed, positive random variables.

In particular, the distribution of velocity magnitudes for each simulation was

fit to a Maxwell-Boltzmann distribution:

fv(v) =
(

3

2πσ2

)3/2

exp
[
−3v2

2σ2

]
(4.1)

where v is the particle velocity and σ is the velocity dispersion. The Maxwell-

Boltzmann generally serves to describe the velocity distribution of a particle within

a stationary environment assumed to be in equilibrium, where particle interactions

only occur via brief collisions in which particles transfer energy and momentum.

In the following paragraphs and figures, I describe the relative angular deviation

of Sgr A* measured at simulation times t = 1 yr, 5 yr, 10 yr, and 15 yr, along

with the velocity magnitude and perpendicular velocity component magnitude.
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To compute this perpendicular component, I assume it is equal to the additional

orthogonal velocity components leading to v =
√

3v2⊥ or v⊥ =
√

(1/3)v2. The

result summaries are further supplemented by Tables 6.2 and 6.3, which list the

mean and standard deviation of the distributed values. In converting distance to

subtended angle, I assume a distance from the galactic center of R0 = 8.0 kpc.

On average, 31922 stars were drawn in the Hernquist density profile simulation,

only considering stars up to a maximum radius of 0.1 pc. The distribution of

the angular shift of Sgr A* relative to its initial position after a time period of

15 years was best fit by a gamma distribution with mean 22.7 ± 5.0 µas. The

distribution of velocity magnitudes for Sgr A* due to the presence of this profile was

fit by a Maxwell-Boltzmann with mean 0.06 ± 0.02 km s−1, with a perpendicular

component magnitude of 0.04± 0.01 km s−1.

An average of 11462 10 M⊙ black holes and 358 100 M⊙ black holes were

drawn within the inner parsec, displacing Sgr A* on average by 20.6 ± 8.5 µas

and 35.5 ± 14.9 µas respectively after 15 years. The velocity magnitude of Sgr

A* induced by the 10 M⊙ black holes was on average 0.05 ± 0.02 km s−1, with

perpendicular component of 0.03±0.01 km s−1. For the 100 M⊙ black hole density

profile, Sgr A* possessed a mean velocity magnitude of 0.09± 0.04 km s−1, and a

perpendicular component magnitude of 0.05± 0.02 km s−1.

There was on average 4 IMBHs of mass 103 M⊙ drawn according to our fiducial

density profile within one parsec, inducing angular shifts of 39.6± 25.7 µas on the

position of Sgr A* after 15 years. The average velocity of the central black hole

induced by this profile was 0.1±0.06 km s−1, though unlike with other density pro-

files the distribution of this velocity was better fit to a general gamma distribution

with mean and standard deviation 0.06 ± 0.04 km s−1. The mean perpendicular
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velocity component was 0.06± 0.04 km s−1.

From the Mastrobuono-Battisti et al. density profile, an average of 10 104 M⊙

IMBHs were drawn in the inner parsec. After 15 years, they induced an angular

shift in Sgr A* position of 953.9± 459.0 µas, with velocity magnitude and perpen-

dicular component of 2.63± 1.33 km s−1 and 1.57± 0.86 km s−1 respectively.

4.2 Effects on Orbital Parameters of S2

I refer you to Tables 6.4 and 6.5 for a thorough summary of the average changes

in semi-major axis (∆a/a, where a = 4.823 mpc), eccentricity (∆e), inclination

(∆i), longitude of ascending node (∆Ω), shift of periapse (∆Θp), and shift of

apoapse (∆Θa) induced by the stellar control and the tested discrete and smooth

stellar/intermediate mass black hole density profiles. For all elements, the mean

change did not scale directly with mass; 104 M⊙ IMBHs produced the maximal

average change in an orbital element, with the stellar control and 10 M⊙ stellar

black holes producing the next largest average changes, and the 1000 M⊙ IMBHs

followed by the 100 M⊙ stellar black holes producing the least. Discretely realized

profiles induced various mean changes in semi-major axis, differing by approxi-

mately a factor of ten (∆a/a ∼ 10−5−10−4) and possessing no dramatic differences

from changes in semi-major axis induced by a smoothly distributed profile. Stars

and low-mass stellar black holes induced changes on eccentricity with a mean of

∼ 10−5, while for 100 M⊙ and 1000 M⊙ black holes this value was ∼ 6 × 10−6.

The mean change in eccentricity due to 104 M⊙ black holes was almost a factor

of 100 greater at 3.76 × 10−4. The changes in eccentricity induced by discretely

distributed particles was less in all cases than those induced by the corresponding

46



smooth simulated profile, though by zero to two orders of magnitude.

In the second row panels of Figure 4.6, we see that smooth profiles had abso-

lutely negligible effects on inclination and longitude of ascending node (all chang-

ing these elements by ∼ 10−13 degrees) in contrast to their discrete counter-

parts. Discretely distributed 104 M⊙ IMBHs induced the largest average change of

∆i = 0.0539◦ and ∆Ω = 0.152◦. 1000 M⊙ and stellar black holes of masses 10 M⊙

and 100 M⊙ induced average changes of ∆i ≈ 0.001◦ and ∆Ω ≈ 0.003◦, and the

stellar control induced changes in i and Ω of ∼ 0.003◦ and ∼ 0.016◦ respectively.

Discretely distributed profiles also generated larger shifts in periapse and

apoapse when compared to smooth distributions. For all but the 104 M⊙ IMBH

profile the mean angular shift of periapse position was ∆Θp ≲ 8 µas. Shifts in

apoapse position ∆Θa were greater for each profile than ∆Θp, reaching a maxi-

mum mean of 0.97 mas with the 104 M⊙ IMBHs. All profiles induced a mean ∆Θa

that was above a 10 µas threshold, reaching a next-largest value of 130 µas with

the stellar control, 27.6 µas with 10 M⊙ black holes, 19.8 µas with 1000 M⊙ black

holes, and 13.7 µas with 100 M⊙ black holes.
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(b) Bivariate kernel density estimation of angular dis-
placement of Sgr A*, induced by stellar control, as
measured at four times (t = 1 yr, 5 yr, 10 yr, and
15 yr).
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Figure 4.1: The angular shift and induced velocity of Sgr A* when surrounded by
stars of mass 1 M⊙, distributed via a Hernquist density profile (Equation (3.1))
extending to the inner 0.1 pc.
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(b) Bivariate kernel density estimation of angular dis-
placement of Sgr A*, induced by 10 M⊙ stellar black
holes.
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(c) Histogram distribution of intrinsic velocity magnitude and perpendicular
component of the velocity of Sgr A*, induced by 10 M⊙ stellar black holes.

Figure 4.2: As in Figure 4.1, with Sgr A* only surrounded by stellar black holes
distributed according to the density profile of Equation (3.1.2) with MBH = 10 M⊙
to a maximum radius of 1 pc.

49



0.0 2.5 5.0 7.5 10.0
 ( as)

0.0e+00

1.0e-01

2.0e-01

3.0e-01

4.0e-01

P
D

F(
)

t = 1 yr

0 20 40
 ( as)

0.0e+00

2.0e-02

4.0e-02

6.0e-02

8.0e-02

P
D

F(
)

t = 5 yr

0 20 40 60 80
 ( as)

0.0e+00

1.0e-02

2.0e-02

3.0e-02

4.0e-02

P
D

F(
)

t = 10 yr

0 50 100
 ( as)

0.0e+00

5.0e-03

1.0e-02

1.5e-02

2.0e-02

2.5e-02

P
D

F(
)

t = 15 yr

(a) Histogram representation of angular displacement
of Sgr A*, induced by 100 M⊙ stellar black holes.

5.0 2.5 0.0 2.5 5.0
y ( as)

4

2

0

2

4

z 
(

as
)

t = 1 yr

20 10 0 10 20
y ( as)

20

15

10

5

0

5

10

15

20

z 
(

as
)

t = 5 yr

50 25 0 25 50
y ( as)

40

20

0

20

40

z 
(

as
)

t = 10 yr

50 0 50
y ( as)

60

40

20

0

20

40

60

z 
(

as
)

t = 15 yr

0.00

0.14

0.29

0.43

0.57

0.71

0.86

1.00

0.00

0.12

0.25

0.38

0.50

0.62

0.75

0.88

1.00

0.00

0.12

0.25

0.38

0.50

0.62

0.75

0.88

1.00

0.00

0.12

0.25

0.38

0.50

0.62

0.75

0.88

1.00

(b) Bivariate kernel density estimation of angular dis-
placement of Sgr A*, induced by 100M⊙ stellar black
holes.
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(c) Histogram distribution of intrinsic velocity magnitude and perpendicular
component of the velocity of Sgr A*, induced by 100 M⊙ stellar black holes.

Figure 4.3: As in 4.1, with Sgr A* only surrounded by stellar black holes distributed
according to the density profile of Equation (3.1.2) with MBH = 100 M⊙ to a
maximum radius of 1 pc.
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(b) Bivariate kernel density estimation of angular dis-
placement of Sgr A*, induced by 1000 M⊙ interme-
diate mass black holes.
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(c) Histogram distribution of intrinsic velocity magnitude and perpendicular
component of the velocity of Sgr A*, induced by 1000 M⊙ intermediate mass
black holes. The dotted line in the upper most histogram indicates the fitted
Maxwell-Boltzmann, with a mean and standard deviation of the dataset.

Figure 4.4: As in 4.1, with Sgr A* only surrounded by 1000 M⊙ intermediate-mass
black holes distributed according to the density profile of Equation (3.1.3) to a
maximum radius of 1 pc.
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(b) Bivariate kernel density estimation of angular dis-
placement of Sgr A*, induced by 104 M⊙ intermedi-
ate mass black holes.
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(c) Histogram distribution of intrinsic velocity magnitude and perpendicular
component of the velocity of Sgr A*, induced by 104 M⊙ intermediate mass
black holes.

Figure 4.5: As in 4.1, with Sgr A* only surrounded by 104 M⊙ intermediate-mass
black holes distributed according to the density profile of Equation (3.1.3) to a
maximum radius of 1 pc.
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Figure 4.6: Changes in orbital elements (semi-major axis, eccentricity, inclination,
longitude of ascending node, shift of periapse, and shift of apoapse) experienced by
S2 during each simulation run when surrounded by tested density profiles. Red-
colored data corresponds to simulations of the stellar control (Equation (3.1)),
orange to 10 M⊙ stellar black holes (Equation (3.1.2) with MBH = 10 M⊙), green
to 100 M⊙ stellar black holes (Equation (3.1.2) with MBH = 100 M⊙), blue to
1000 M⊙ IMBHs (Equation (3.1.3)), and purple to 104 M⊙ IMBHs (Equation
(3.1.3).) Solid lines indicate the average change of the orbital element induced by
a certain density profile, coordinated by color. Dashed lines indicate the average
change of the orbital element induced by a smooth version of a certain density
profile, also coordinated by color. A single circle indicates the change in orbital
element that occurred in one particular simulation of S2 embedded in a certain
density profile.
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CHAPTER 5

DISCUSSION

Though the N -body simulations carried out in this work were based on signif-

icantly simplified assumptions, their results provide non-trivial insight into what

black hole populations may or may not be both possible and detectable in the

Galactic Center. Below I compare obtained results to our strongest current obser-

vational constraints, which rely on the proper motion of Sgr A* possessing a 2σ

upper limit of 1.8 km s−1 for the velocity perpendicular to the galactic plane (Reid

& Brunthaler, 2004), and the constrained error of Gillessen et al. (2009) orbital fit

for S2.

With the constraint of proper motion in mind, all stellar mass and intermediate

mass black hole profiles are plausible within 1 parsec. The combined precision of

EHT stations (≳ 25 µas) would allow detection within 15 years of the angular

displacement induced on Sgr A* by any of the examined profiles. The velocity

induced on Sgr A* by stars and stellar black holes (∼ 0.06 km s−1) stand in

agreement with an amplitude of Brownian motion calculated by Merritt et al.

(2007); Chatterjee et al. (2002); Loeb & Furlanetto (2013), using ⟨m∗⟩ = 1 M⊙

and MBH = 4.4× 106 M⊙ (See Equation (1.18)), as well as N -body simulations of

stars within the inner 2 pc performed by Reid & Brunthaler (2004). Both 100 M⊙

and 1000 M⊙ black holes induced angular shifts in the position of Sgr A* at a rate

of ≳ 2 µas yr−1. The mean velocity of Sgr A* when surrounded by each profile is on

the order of 0.1 km s−1, closer to estimates on velocity out of the disk as outlined by

Reid & Brunthaler (2004) than results from other profiles. However, due to their

similar dynamical signature the tested profiles for 100 M⊙ and 1000 M⊙ black

holes are arguably impossible to differentiate from their gravitational effect on Sgr
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A* alone. The 104 M⊙ IMBH profile produced the largest angular shifts, with a

mean of ∼ 65 µas yr−1. It additionally induced the largest intrinsic velocity of

2.62±1.35 km s−1. The perpendicular component of this was 1.6±0.9 km s−1, the

mean of which is just within the present 2σ limit of 1.8 km s−1 (Reid & Brunthaler,

2004).

To properly examine the impact of these density profiles on S2, let us first

review the current accuracies in VLT and Keck data embedded in errors allotted

for by Gillessen et al. (2009). The best fitted values for semi-major axis and

eccentricity are accurate to ∼ 2 mas and 3×10−3 respectively, and the inclination,

longitude of ascending note, and argument of periapse are accurate to 0.72◦−0.81◦.

To properly use the orbit of S2 as a probe for stellar remnants and intermediate

mass black holes, the changes induced by these dark objects must necessarily fit

within these accuracies while additionally surpassing orbital changes associated

with relativistic effects. Grould et al. (2017) have investigated the potential of

GRAVITY to detect various relativistic effects on the S2, concluding that a shift

of periapse due to relativistic advance will be 30 µas in 14 years (roughly 34 µas

per revolution.) Alternatively Gualandris et al. (2010) calculate the displacement

in the star’s apoapse as

∆ra ≈ a(1 + e)∆ϖ ≈ 6πGMSgr

c2(1− e)
(5.1)

where∆ϖ = ∆(Ω+ω) is the advance in periapse angle. UsingMSgr = 4.4×106 M⊙

and R0 = 8 kpc, ∆ra subtends an angle on the sky ∆Θa = 0.86 mas. The angle on

the sky subtended by the displacement in the star’s periapse can then be calculated

as ∆Θp = ∆Θa(1 − e)/(1 + e) ≈ 54.9 µas. Thus in ∆Θa and ∆Θp, along with

constrained errors of a, e, i, Ω, and ω, we have lower limits and upper limits

respectively to determine the detectability of a certain density profile’s dynamical

signature on S2.
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There is a notable difference of the dynamical effect of smooth and discrete

distributions in orbital arguments pertaining to angle (i and Ω). A smooth or

centralized distribution creates virtually no changes in these parameters, whereas

the gravitational effect of discretely distributed particles generates distinct apsi-

dal precession of the orbit of S2. The average change in i and Ω for all density

profiles are within current error of 0.7◦. It is interesting to note that the mean

change in inclination and longitude of ascending node due to the stellar control

and 10 M⊙ stellar mass black holes exceeds that induced by 100 M⊙ stellar black

holes and 1000 M⊙ IMBHs. This may be because, due to their increased number

density, these smaller objects experience closer encounters with S2 that more in-

tensely perturb its orbit. However, stars, stellar black holes, and 1000 M⊙ IMBHs

all induced changes in periapse and apoapse under estimated relativistic shifts,

implying that these density profiles are not detectable through observation of S2’s

orbital precession. Only the 104 M⊙ IMBH profile induced changes in these pa-

rameters exceeding the lower limit placed by the relativistic effects. With this, S2

appears to be a more effective probe for detecting intermediate mass black holes

of mass ≳ 104 M⊙. Particularly through observations of ∼ milli-arcsecond angular

shifts in apoapse, along with perceptible changes in inclination and longitude of

ascending node, we can infer the existence of surrounding discrete objects.

This work can be improved upon in a number of ways, primarily in an in-

clusion of a larger variety of density profiles and improved numerical methods. I

chose to test a few profiles that literature has provided, as they reflect conclusions

of significant theoretical work. However, the total cluster mass of both stellar

and intermediate mass black holes of the varying characteristic masses remain an

independent variable. The results gathered here may be expanded upon through

examination of high-abundance and low-abundance cases of the tested density pro-

56



files, to further refine limits on black hole density profiles given current astrometric

constraints. In a similar vein, more information may be obtained through exam-

ining spherically asymmetric profiles. For both Sgr A* and S2, the experienced

gravitational effect depends both on the characteristic and cumulative mass, as

well as spherical symmetry of a surrounding density profile. While an object em-

bedded within a spherically symmetric mass comprised of numerous but discrete

particles experiences an induced Brownian motion proportional to typical particle

mass, an asymmetric distribution of particles generates a larger amplitude wobble

reflecting the skewed distribution. This may have already played a role in simu-

lations of the 104 M⊙ IMBH profile, where the assumed spherical symmetry was

compromised by a relatively small number density and larger gravitational effects

on Sgr A* and S2 were generated.

Even though this work identified a potentially observable IMBH black hole

density profile through its gravitational effects on S2, this effect may be replicable

by alternative unseen matter or a single large IMBH. Thus it is critical to un-

derstand how the magnitude of these changes evolve over multiple periods of S2’s

orbit, and whether such information is in fact indicative of the total mass and

concentration of the gravitationally influencing objects. In general, future N -body

simulations on this subject would do well to consider how the combined gravi-

tational effects of these objects might manifest in the Galactic Center. An ideal

simulation would be a relaxed orbital system populated with stars, stellar black

holes, and intermediate-mass black holes in the inner parsec. How their combined

dynamical effect reveals itself will be contingent on the particular number and

distribution of each object. This may be better investigated with higher-order in-

tegration schemes that satisfactory incorporate direct integration and symplectic

methods, treating all particles in the system as gravitationally active.
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CHAPTER 6

DATA TABLES

⟨mρ⟩ = 1 M⊙ ⟨mρ⟩ = 10 M⊙ ⟨mρ⟩ = 100 M⊙ ⟨mρ⟩ = 103 M⊙ ⟨mρ⟩ = 104 M⊙

Error threshold
Discrete 1× 10−4 1× 10−7 10−7 10−7 10−7

Smooth 10−4 10−5 10−5 10−4 5× 10−3

Nruns successful 309 413 1299 1394 943
Nparticles

Mean 31922 11462 358 4 10
Max 32069 [0.3%] 11623 [0.2%] 405 [0.1%] 5 [17.8%] 14 [1.5%]
Min 31770 [0.3%] 11272 [0.2%] 321 [0.1%] 0 [0.1%] 5 [0.5%]

Table 6.1: The error threshold determining which simulations of discrete and smooth density profiles were analyzed, number
of successful simulation runs (out of 1500), and the average, minimum, and maximum number of particles drawn from the
tested density profiles. Bracketed percentages indicate the percentage of runs that involved the maximum or minimum
number of particles.
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⟨mρ⟩ = 1 M⊙ ⟨mρ⟩ = 10 M⊙ ⟨mρ⟩ = 100 M⊙ ⟨mρ⟩ = 103 M⊙ ⟨mρ⟩ = 104 M⊙

µ σ µ σ µ σ µ σ µ σ

∆θ (µas)
1 yr 0.7 0.3 1.2 0.6 2.4 1 2.8 1.9 67.8 33.8
5 yr 5.8 1.66 6.9 2.8 11.9 5 13.6 9.2 333.8 165.8
10 yr 14.4 3.4 12.7 5.6 23.6 10 26.8 17.8 654.9 321.2
15 yr 22.7 5 20.6 8.5 35.5 14.9 39.6 25.7 953.9 459

Table 6.2: Mean (µ) and standard deviation (σ) of the angular displacement of Sgr A*, measured relative to its original
position, induced by discrete density profiles describing the distribution of stars (⟨mρ⟩ = 1 M⊙), stellar black holes (⟨mρ⟩ =
10 M⊙, 100 M⊙), and intermediate mass black holes (⟨mρ⟩ = 1000 M⊙, 104 M⊙). See Figures 4.1 to 4.5 for its visual
representation.

⟨mρ⟩ = 1 M⊙ ⟨mρ⟩ = 10 M⊙ ⟨mρ⟩ = 100 M⊙ ⟨mρ⟩ = 103 M⊙ ⟨mρ⟩ = 104 M⊙

µ σ µ σ µ σ µ σ µ σ

|v| (km s−1) 0.06 0.02 0.05 0.02 0.09 0.04 0.1 0.06 2.63 1.33
|v⊥| (km s−1) 0.04 0.01 0.03 0.01 0.05 0.02 0.06 0.04 1.57 0.86

Table 6.3: Mean (µ) and standard deviation (σ) of the absolute intrinsic velocity and its perpendicular component of Sgr
A*, induced by discrete density profiles describing the distribution of stars (⟨mρ⟩ = 1 M⊙), stellar black holes (⟨mρ⟩ =
10 M⊙, 100 M⊙), and intermediate mass black holes (⟨mρ⟩ = 1000 M⊙, 10

4 M⊙). The table is visualized in Figures 4.1 to
4.5.
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⟨mρ⟩ = 1 M⊙ ⟨mρ⟩ = 10 M⊙ ⟨mρ⟩ = 100 M⊙ ⟨mρ⟩ = 103 M⊙ ⟨mρ⟩ = 104 M⊙

∆a/a

Mean
Discrete 4.14E-05 2.07E-05 1.22E-05 1.26E-05 6.21E-04
Smooth 1.35E-05 2.03E-06 6.63E-07 9.67E-06 1.86E-03

∆e

Mean
Discrete 2.28E-05 1.12E-05 5.61E-06 6.81E-06 3.76E-04
Smooth 1.73E-06 2.61E-07 8.53E-08 1.24E-06 2.40E-04

Table 6.4: Average changes induced by discrete and smooth density profiles describing the distribution of stars (⟨mρ⟩ = 1M⊙),
stellar black holes (⟨mρ⟩ = 10 M⊙, 100 M⊙), and intermediate mass black holes (⟨mρ⟩ = 1000 M⊙, 104 M⊙) on the semi-
major axis (∆a/a, with a ∼ 5 mpc) and eccentricity (e) of S2.
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⟨mρ⟩ = 1 M⊙ ⟨mρ⟩ = 10 M⊙ ⟨mρ⟩ = 100 M⊙ ⟨mρ⟩ = 103 M⊙ ⟨mρ⟩ = 104 M⊙

∆i (deg)
Mean
Discrete 5.10E-03 1.23E-03 5.94E-04 8.25E-04 4.13E-02
Smooth 1.27E-13 1.27E-13 1.78E-13 1.53E-13 2.54E-14

∆Ω (deg)
Mean
Discrete 1.62E-02 3.79E-03 1.86E-03 2.85E-03 1.36E-01
Smooth 4.07E-13 9.92E-13 2.54E-13 2.04E-13 5.09E-14

∆Θp (µas)
Mean
Discrete 8.3 1.8 0.9 1.3 61.9
Smooth 0.5 0.08 0.03 0.08 8.3

∆Θa (µas)
Mean
Discrete 130 27.6 13.7 19.8 970.4
Smooth 8.2 1.3 0.4 1.3 130.2

Table 6.5: Average changes induced by discrete and smooth density profiles describing the distribution of stars (⟨mρ⟩ = 1M⊙),
stellar black holes (⟨mρ⟩ = 10M⊙, 100M⊙), and intermediate mass black holes (⟨mρ⟩ = 1000M⊙, 10

4 M⊙) on the inclination,
longitude of the periapsis, angular shift of periapse, and angular shift of apoapse (i, Ω, ∆Θp, and ∆Θa) of S2.

61



APPENDIX A

ENCLOSED MASS, ACCELERATION, AND GRAVITATIONAL

POTENTIAL OF A GENERALIZED DENSITY CUSP

Consider a density profile describing a particle system characterized by a cusp:

ρ(r) = ρ0

(
r

r0

)−γ

(A.1)

where γ > 0.

First, we determine enclosed mass, acceleration, and gravitational potential for

the density profiles with 2 < γ < 3. The enclosed mass is calculated through a

surface integral of Equation (A).

M(< r) =

∫ r

0

4πs2ρ(s)ds

= 4πρ0

∫ r

0

s2
(

s

r0

)−γ

ds

=
4πρ0

r−γ
0

∫ r

0

s2−γds

=
4πρ0

r−γ
0

1

3− γ
s3−γ

∣∣∣∣s=r

s=0

=
4πr3ρ0
3− γ

(
r

r0

)−γ

(A.2)

Note that M(< r) < 0 for γ > 3, therefore such γ values correspond to unphysical

systems.

From Newton’s law of gravitation, the force experienced by a particle with mass

m at position r is F (r) = ma = −GmM(< r)/r2 r̂. This implies the acceleration
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experienced by the particle is

a(r) = −GM(< r)

r2
r̂

=
−4πGr3ρ0
(3− γ)r2

(
r

r0

)−γ

r̂

=
−4πGrρ0
(3− γ)

(
r

r0

)−γ

r̂ (A.3)

From the acceleration, we can determine the gravitational potential of the den-

sity profile:

a(r) = −∇Φ(r) = −∂Φ

∂s

∣∣∣∣
s=r

r̂

Φ(r) = −
∫ ∞

r

a(s) · ds

=
4πGρ0

(3− γ)r−γ
0

∫ ∞

r

s1−γds

=
4πGρ0

(3− γ)r−γ
0

1

2− γ
s2−γ

∣∣∣∣s=∞

s=r

= − 4πGr2ρ0
(3− γ)(γ − 2)

(
r

r0

)−γ

(A.4)

In the case of γ = 2 (the isothermal sphere), Equations (A.2) and (A.3) still

hold. Specifically,

M(< r) = 4πr30ρ0

(
r

r0

)
a(r) = −4πGr0ρ0

(
r

r0

)−1

Given that |a| ∝ r−1, gravitational potential is proportional to the natural loga-

rithm of r:

Φ(r) = −
∫ ∞

r

a(s) · ds

= 4πGr0ρ0

∫ ∞

r

(
s

r0

)−1

ds

= 4πGr20ρ0 ln
(

r

r0

)
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though this is undefined as r → ∞. Such a divergence occurs for any γ < 2, hence

for a density profile ρ ∝ r−γ (γ < 2) there must be an indicated truncated radius

rmax such that for r > rmax, Φ(r) = 0.
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